Performance Evaluation of Multi-Stage Shell and Tube Transport Membrane Condenser Heat Exchangers for Low Grade Waste Heat and Water Recovery

Author(s):  
Soheil Soleimanikutanaei ◽  
Cheng-Xian Lin ◽  
Dexin Wang

In this work for the first time the performance of multi-stage shell and tube Transport Membrane Condenser (TMC) based heat exchangers are evaluated numerically. The present heat exchanger is design to work under high pressure and temperature condition for both heat and water recovery in Oxy-Combustion processes. TMC heat exchangers use the nano-porous and ceramic membrane technology to extract the water vapor and latent heat of condensation from the flue-gas. The most important application of TMC heat exchangers is in the power plants which the water vapor in the presence of other non-condensable gases (i.e. CO2, O2 and N2) exist. Effect of the different arrangement of the multi-stage shell and tube TMC heat exchangers, number of branches and number of heat exchangers in each branch on the heat transfer and water recovery have been studied numerically. A single phase multi-component model is used to assess the capability of single stage TMC heat exchangers in terms of waste heat and water recovery at various inlet conditions. Numerical simulation has been performed using ANSYS-FLUENT software and the condensation rate model has been implemented applying User Define Function. Finally, an optimum configuration for the TMC heat exchanger unit has been proposed and the results of numerical simulations are depicted in terms of temperature and water vapor mass fraction contours.

Author(s):  
Soheil Soleimanikutanaei ◽  
Cheng-Xian Lin ◽  
Dexin Wang

Low grade waste heat and water recovery using ceramic membrane, is an emerging technology which helps to increase the efficiency of boilers and gas or coal combustors in various industrial processes and conventional power plants. The tube wall of a Transport Membrane Condenser (TMC) based heat exchanger is made of a nano-porous material with high membrane selectivity which is able to extract condensate water from the flue gas in the presence of other non-condensable gases (i.e. CO2, O2 and N2). In this work, a numerical study has been carried out to investigate the effects of transversal pitches of the TMC bundle tubes on the performance of a TMC based cross flow heat exchanger. A simplified multi-species transport model is used to investigate the heat and mass transfer characteristics of a condensing combustion flue gas in a crossflow transport membrane tube bundle. Various transversal (0.4”–0.6”) and longitudinal (0.4”–0.8”) pitches were used. The numerical results revealed that the effect of transversal pitches on the outlet parameters are more pronounced.


Author(s):  
Esmaiil Ghasemisahebi ◽  
Soheil Soleimanikutanaei ◽  
Cheng-Xian Lin ◽  
Dexin Wang

In this study tube bundle Transport Membrane Condenser (TMC) has been studied numerically. The tube walls of TMC based heat exchangers are made of a nano-porous material and has a high membrane selectivity which is able to extract condensate pure water from the flue gas in the presence of other non-condensable gases (i.e. CO2, O2 and N2). Low grade waste heat and water recovery using ceramic membrane, based on separation mechanism, is a promising technology which helps to increase the efficiency of boilers and gas or coal combustors. The effects of inclination angles of tube bundle, different flue gas velocities, and the mass flow rate of water and gas flue have been studied numerically on heat transfer, pressure drop and condensation rates. To assess the capability of single stage TMC heat exchangers in terms of waste heat and water recovery at various inlet conditions, a single phase multi-component model is used. ANSYS-FLUENT is used to simulate the heat and mass transfer inside TMC heat exchangers. The condensation model and related source/sink terms are implemented in the computational setups using appropriate User Defined Functions (UDFs).


Author(s):  
Soheil Soleimanikutanaei ◽  
Esmaiil Ghasemisahebi ◽  
Cheng-Xian Lin ◽  
Dexin Wang

In this study Transport Membrane Condenser (TMC), a new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been studied for waste heat and water recovery in power plant application. TMC is able to extract condensate pure water from the flue gas in the presence of other non-condensable gases (i.e. CO2, O2 and N2). The effects of mass flow rate of flue gas and water vapor content of flow on the heat transfer and condensation rate of a TMC shell and tube heat exchanger have been studied numerically. A single phase multi-component model is used to assess the capability of single stage TMC heat exchangers in terms of waste heat and water recovery at various inlet conditions. Numerical simulation has been performed using ANSYS-FLUENT software and the condensation rate model has been implemented applying User Define Function.


Author(s):  
Kyeong Mo Hwang ◽  
Tae Eun Jin

As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2737
Author(s):  
Francesca Ceglia ◽  
Adriano Macaluso ◽  
Elisa Marrasso ◽  
Maurizio Sasso ◽  
Laura Vanoli

Improvements in using geothermal sources can be attained through the installation of power plants taking advantage of low and medium enthalpy available in poorly exploited geothermal sites. Geothermal fluids at medium and low temperature could be considered to feed binary cycle power plants using organic fluids for electricity “production” or in cogeneration configuration. The improvement in the use of geothermal aquifers at low-medium enthalpy in small deep sites favours the reduction of drilling well costs, and in addition, it allows the exploitation of local resources in the energy districts. The heat exchanger evaporator enables the thermal heat exchange between the working fluid (which is commonly an organic fluid for an Organic Rankine Cycle) and the geothermal fluid (supplied by the aquifer). Thus, it has to be realised taking into account the thermodynamic proprieties and chemical composition of the geothermal field. The geothermal fluid is typically very aggressive, and it leads to the corrosion of steel traditionally used in the heat exchangers. This paper analyses the possibility of using plastic material in the constructions of the evaporator installed in an Organic Rankine Cycle plant in order to overcome the problems of corrosion and the increase of heat exchanger thermal resistance due to the fouling effect. A comparison among heat exchangers made of commonly used materials, such as carbon, steel, and titanium, with alternative polymeric materials has been carried out. This analysis has been built in a mathematical approach using the correlation referred to in the literature about heat transfer in single-phase and two-phase fluids in a tube and/or in the shell side. The outcomes provide the heat transfer area for the shell and tube heat exchanger with a fixed thermal power size. The results have demonstrated that the plastic evaporator shows an increase of 47.0% of the heat transfer area but an economic installation cost saving of 48.0% over the titanium evaporator.


2014 ◽  
Vol 955-959 ◽  
pp. 2911-2914
Author(s):  
Jia Bin Zhu ◽  
Shu Zhong Wang ◽  
Jian Ping Yang

A large amount of waste heat is generated in the oil extraction process when using steam assisted gravity drainage (SAGD) technology. Thermal distillation technology is recommended to deal with the Liaohe Oilfield sewage. It not only can utilize the low-grade energy source, but also can recover the water to settle the water shortage problem. The principles and processes of multi-stage flash distillation (MSF), multi-effect distillation (MED) and vapor compression (VC) are introduced, and the tech-economic analysis is also made. It is found that it has significant advantage in heat and water recovery using the MED technology to deal with the Liaohe Oilfield sewage.


Author(s):  
Edward Levy ◽  
Harun Bilirgen ◽  
Joshua Charles ◽  
Mark Ness

Heat exchangers, which cool boiler flue gas to temperatures below the water vapor dew point, can be used to capture moisture from flue gas and reduce external water consumption for power plant operations. At the same time, thermal energy removed from the flue gas can be used to improve unit heat rate. Recent data also show that emissions of air toxics from flue gas would be reduced by use of condensing heat exchangers. This paper describes results from a slip stream test of a water cooled condensing heat exchanger system at a power plant with a lignite-fired boiler. The flue gas which flowed through the heat exchangers had been extracted from a duct downstream of the electrostatic precipitator. Measurements were made of flue gas and cooling water temperatures, flue gas water vapor concentrations, and concentrations of elemental and oxidized Hg at the inlet and exit of the heat exchanger system. Condensed water was also collected and analyzed for concentrations of H2SO4 and HCl. Results on the effects of the condensing heat exchanger operating conditions on oxidation and capture of Hg and on the capture of sulfuric and hydrochloric acids are described.


A heat exchanger is equipment that transfers heat energy from one fluid stream to another fluid stream across a solid surface by conduction and convection. Heat exchangers are used in air conditioning & refrigeration systems, power plants, automotive industries, chemical processing, waste heat recovery systems, and food industries. Shell & tube heat exchangers are the most widely used heat exchanger. Earlier many types of studies were carried out on baffle of heat exchanger, as the hydraulic performance of shell side of exchanger relies on baffle elements such as changing baffle types, baffle segments, baffle angles, baffle cuts, etc. are introduced. But only a few researches are concentrated on the tube side. In this paper, efforts have been made to design a shell & tube heat exchanger by using the kern method & referring TEMA standards. Also, the fluid flow behavior & heat transfer mechanism of shell & tube heat exchanger with four different cross-sections of the tubes i.e. Circular, Rectangular, Square & Triangular is numerically investigated using ANSYS-fluent. Numerical simulation was carried out for a single tube pass shell & tube heat exchanger with 25% baffle cut. Finally, from the simulation results, suggestions are made for the best geometry which gives the best thermo-hydraulic performance


Author(s):  
Todd M. Bandhauer ◽  
Shane D. Garland

Electric power plants in the U.S. dissipate 4.3 billion gallons of water per day into the atmosphere through evaporative cooling. As freshwater resources become constrained, it will be essential for power plants to transition from evaporative cooling to dry air cooling. One of the major problems associated with dry air cooling is the large size and associated cost of the dry air heat exchangers due to the large surface area required to overcome the low convective heat transfer coefficient of air. This study investigates using low-grade waste heat available in the combustion exhaust gases (106°C inlet, 86 MW dry waste heat available) of a 565 MW Natural Gas Combined Cycle Power Plant (NGCC) to drive a supplemental high efficiency turbo-compression cooling (TCC) system that decreases the size of the dry air heat exchangers. In this system, both a recuperative Rankine cycle and a supercritical system were considered to drive a turbo-compressor. The low-grade waste heat is supplied to a flue gas heat exchanger in either the recuperative Rankine or supercritical cycle to generate power that drives a vapor compression cycle to supply supplementary cooling for the power plant condenser water. For the TCC system to operate at a high COP, both the turbine and compressor must operate at isentropic efficiencies exceeding 80%. This high efficiency has been demonstrated for centrifugal turbomachines for a wide variety of applications over small ranges of specific speed: from 45 to 100 for turbines, and from 80 to 140 for compressors. In the present study, a wide range of possible fluids was considered to perform a complete system level thermodynamic analysis combined with a turbo-compressor dimensional scaling analysis. The results of the analyses show that the total UA required for both the primary dry air coolers and the dry air condensers in the supercritical TCC system with a COP of 2 is 26% less than the UA required for dry air cooling alone (from 150.7 to 111.5 MW K−1). As a result, using the supercritical TCC cooling system has the potential to reduce the overall cost of dry air cooling relative to the state of the art.


Author(s):  
Spencer C. Gibson ◽  
Derek Young ◽  
Todd M. Bandhauer

Low grade waste heat streams with temperatures near 100°C are abundant, presenting a significant opportunity to reduce primary energy consumption across the world. For example, thermally activated cooling systems can utilize waste heat to meet air conditioning loads. Recently, a turbocompression cooling system (TCCS) that utilizes low grade waste heat from power plants was investigated to improve the economic viability of dry air cooling systems. The TCCS utilizes Rankine and vapor-compression cycles that are directly coupled through a high efficiency centrifugal turbine and a compressor. In this paper, a coupled thermodynamic, heat transfer, and economic model for a TCCS is applied to utilizing low grade engine coolant waste heat to meet cargo ship cooling load requirements while minimizing the payback period for a particular operational scenario. The results of this study show that with a constant heat input of 2 MW, the liquid coupled turbocompression cooling system provided 642 kW of cooling with a payback period of 2 years and 6 months, and the total cost of the heat exchangers made up more than 84% of the total system cost. In addition, a sensitivity analysis showed that the effectiveness of the power cycle heat exchangers have a stronger influence on the payback period than the cooling cycle heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document