The Effect of Mixing and s/c Ratio on Lower Temperature Methane Steam Reforming Reaction With Waste Thermal Energy in Stationary Fuel Cell

Author(s):  
Hyemin Song ◽  
Sangseok Yu

Abstract In a stationary fuel cell system, secondary reformer is utilized to enhance system efficiency. Since the heat sources of stationary fuel cell has low temperature, the operation philosophy of secondary reformer has to be differed from high temperature reformer. Researches on methane steam reformers have been made in various directions, but most have been done only in high efficiency systems. In this study, the design of the steam reformer with the low temperature gas as the heat source would be improved and the temperature distribution would be improved. To do this, computational analysis was carried out. Through computational analysis, we tried to improve radial flow uniformity and temperature distribution of methane and water vapor mixture in the reformer. In order to improve the flow and temperature distribution inside the reformer, the analysis was carried out considering the presence of the spiral vortex generator, the shape of the perforated plate, and the baffle. As a result, the uniformity of the flow was increased by installing the spiral vortex generator, and it was confirmed that the average temperature was increased by installing the perforated plate and the baffles. And an endothermic chemical reaction inside the reaction part and investigated the reforming characteristics according to the temperature and s/c ratio in order to consider the chemical reaction side with the improved structure in the flow side. The s/c ratio was set to 2 and 3, and the temperature was set to 1000K and 1100K. As a result, it has been concluded that the modification of the reforming reaction depends on the temperature and s/c ratio, and additional structural improvement is required.

2016 ◽  
Author(s):  
Gahui Shin ◽  
Jinwon Yun ◽  
Sangseok Yu

When the high temperature stationary fuel cell system is designed with external reformer, typical approach to improve efficiency of system is to employ catalytic burner with fuel lean anode-off gas for methane steam reformer. Recently, there have been many studies on the hybrid fuel cell system using anode-off gas to produce additional power. In those hybrid systems, maximum temperature of heat duty for the reformer is significantly reduced. Optimization of heat management is very important for these low temperature reformers. In this study, we carried out an analytic study of the methane steam reforming process with heat duty of non-reactive, low temperature gases. It is found out that the temperature uniformity of inlet gases is crucial for high efficiency. Additionally, the reformer geometry such as heat transfer area and the aspect ratio are meaningful parameters which can severely affect the methane conversion rate under given conditions.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8526
Author(s):  
Richard Symes ◽  
Tchable-Nan Djaname ◽  
Michael Deligant ◽  
Emilie Sauret

This study aims to design and optimize an organic Rankine cycle (ORC) and radial inflow turbine to recover waste heat from a polymer exchange membrane (PEM) fuel cell. ORCs can take advantage of low-quality waste heat sources. Developments in this area have seen previously unusable, small waste heat sources become available for exploitation. Hydrogen PEM fuel cells operate at low temperatures (70 °C) and are in used in a range of applications, for example, as a balancing or backup power source in renewable hydrogen plants. The efficiency of an ORC is significantly affected by the source temperature and the efficiency of the expander. In this case, a radial inflow turbine was selected due to the high efficiency in ORCs with high density fluids. Small scale radial inflow turbines are of particular interest for improving the efficiency of small-scale low temperature cycles. Turbines generally have higher efficiency than positive displacement expanders, which are typically used. In this study, the turbine design from the mean-line analysis is also validated against the computational fluid dynamic (CFD) simulations conducted on the optimized machine. For the fuel cell investigated in this study, with a 5 kW electrical output, a potential additional 0.7 kW could be generated through the use of the ORC. The ORC’s output represents a possible 14% increase in performance over the fuel cell without waste heat recovery (WHR).


2021 ◽  
Author(s):  
Justin M. Pesich ◽  
Nicholas J. Georgiadis ◽  
Mark P. Wernet

Author(s):  
Siti H. Osman ◽  
S. K. Kamarudin ◽  
Nabila A. Karim ◽  
Sahriah Basri

Sign in / Sign up

Export Citation Format

Share Document