Multiphysics Computational Analysis of a Perforated Plate Cooling Flow

2021 ◽  
Author(s):  
Justin M. Pesich ◽  
Nicholas J. Georgiadis ◽  
Mark P. Wernet
2022 ◽  
Author(s):  
Justin M. Pesich ◽  
Nicholas J. Georgiadis ◽  
Mark P. Wernet ◽  
Randy J. Locke ◽  
Douglas R. Thurman ◽  
...  

Author(s):  
Hyemin Song ◽  
Sangseok Yu

Abstract In a stationary fuel cell system, secondary reformer is utilized to enhance system efficiency. Since the heat sources of stationary fuel cell has low temperature, the operation philosophy of secondary reformer has to be differed from high temperature reformer. Researches on methane steam reformers have been made in various directions, but most have been done only in high efficiency systems. In this study, the design of the steam reformer with the low temperature gas as the heat source would be improved and the temperature distribution would be improved. To do this, computational analysis was carried out. Through computational analysis, we tried to improve radial flow uniformity and temperature distribution of methane and water vapor mixture in the reformer. In order to improve the flow and temperature distribution inside the reformer, the analysis was carried out considering the presence of the spiral vortex generator, the shape of the perforated plate, and the baffle. As a result, the uniformity of the flow was increased by installing the spiral vortex generator, and it was confirmed that the average temperature was increased by installing the perforated plate and the baffles. And an endothermic chemical reaction inside the reaction part and investigated the reforming characteristics according to the temperature and s/c ratio in order to consider the chemical reaction side with the improved structure in the flow side. The s/c ratio was set to 2 and 3, and the temperature was set to 1000K and 1100K. As a result, it has been concluded that the modification of the reforming reaction depends on the temperature and s/c ratio, and additional structural improvement is required.


Author(s):  
Mark P. Wernet ◽  
Nicholas J. Georgiadis ◽  
Randy Locke ◽  
Douglas Thurman ◽  
Philip Poinsatte

Author(s):  
Samia Afrin ◽  
Jesus D. Ortega ◽  
Vinod Kumar ◽  
Desikan Bharathan

Conversion of direct solar energy, in particular the Concentrated Solar Power (CSP) technologies, has a significant role on conventional energy cost and efficiency. A single tank thermocline Thermal Energy Storage (TES) system is accountable for the overall efficiency of this conversion system. A single tank TES system has a thermocline region that produces the temperature gradient between hot and cold storage fluid by density difference. The overall energy storage capacity depends on sustaining of this region at uniform manner. This paper analyzes how the difference in the percentage of porous medium influences the effectiveness of the flow-distribution and hence, the overall performance of the TES system. The effectiveness is assessed by the optimal flow distribution. The optimal distribution is obtained by examining the velocity profile at any horizontal plane. This plane should be uniform for sustaining the thermocline region during the operation period. To achieve a uniform velocity distribution, two symmetric perforated plate flow distributors were placed in the tank. The distributors were positioned near the inlet and outlet, and checked the performance by varying the percentage of porous medium since the distribution is influenced by the porosity. Porous distributors with hexagonal shape pore were considered and Hitec® molten salt was used as a heat transfer fluid. These respective percentages of porosity affect the flow distribution throughout the tank during the flow distribution. The standard deviations of the velocity field at different positions along z-plane and thermal diffusivity were analyzed. The analyses of our cases were done to distinguish a configuration for the minimum thermal diffusivity and velocity deviation from the mean flow. A finite volume based computational fluid dynamics software was used to execute the computational analysis.


2016 ◽  
Vol 136 (3) ◽  
pp. 318-324
Author(s):  
Naoya Miyamoto ◽  
Makoto Koizumi ◽  
Hiroshi Miyao ◽  
Takayuki Kobayashi ◽  
Kojiro Aoki

Sign in / Sign up

Export Citation Format

Share Document