Effects of N-Butanol Content on the Dual-Fuel Combustion Mode With CNG at Two Engine Speeds

Author(s):  
Xiangyu Meng ◽  
Wuqiang Long ◽  
Yihui Zhou ◽  
Mingshu Bi ◽  
Chia-Fon F. Lee

Because of the potential to reduce NOx and PM emissions simultaneously and the utilization of biofuel, diesel/compressed natural gas (CNG) dual-fuel combustion mode with port injection of CNG and direct injection of diesel has been widely studied. While in comparison with conventional diesel combustion mode, the dual-fuel combustion mode generally leads lower thermal efficiency, especially at low and medium load, and higher carbon monoxide (CO) and total hydrocarbons (THC) emissions. In this work, n-butanol was blended with diesel as the pilot fuel to explore the possibility to improve the performance and emissions of dual-fuel combustion mode with CNG. Various pilot fuels of B0 (pure diesel), B10 (90% diesel/10% n-butanol by volume basis), B20 (80% diesel/20% n-butanol) and B30 (70% diesel/30% n-butanol) were compared at the CNG substitution rate of 70% by energy basis under the engine speeds of 1400 and 1800 rpm. The experiments were carried out by sweeping a wide range of pilot fuel start of injection timings based on the same total input energy including pilot fuel and CNG. As n-butanol was added into the pilot fuel, the pilot fuel/CNG/air mixture tends to be more homogeneous. The results showed that for the engine speed of 1400 rpm, pilot fuel with n-butanol addition leads to a slightly lower indicated thermal efficiency (ITE). B30 reveals much lower NOx emission and slightly higher THC emissions. For the engine speed of 1800 rpm, B20 can improve ITE and decrease the NOx and THC emissions simultaneously relative to B0.

Author(s):  
Xiangyu Meng ◽  
Yuanxu Li ◽  
Karthik Nithyanandan ◽  
Wuqiang Long ◽  
Chia-Fon F. Lee

Dual-fuel combustion mode with direct injection of diesel as the pilot fuel and port injection of compressed natural gas (CNG) in compression ignition (CI) engines has been widely investigated to comply with the latest emission regulations. The diesel-CNG dual-fuel combustion mode shows some potential to decrease NOx and soot emissions simultaneously, while it reveals a lower thermal efficiency compared to the pure diesel combustion mode under low load condition. The purpose of the current study is to investigate the possibility of using diesel blended with 1-butanol as the pilot fuel to enhance the engine performance and reduce emissions. Three pilot fuels — B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with the CNG substitution rates of 50% and 80% were compared at an engine speed of 1200 rpm. The experiments were conducted by sweeping the pilot fuel injection timing from −3 to −18 ° CA ATDC with an equivalent total energy (∼5 bar IMEP). The results illustrated that, for the 50% CNG substitution rate, the dual-fuel operation mode revealed a higher indicated thermal efficiency (ITE) under low load conditions, and B10 can significantly improve the ITE due to the shorter combustion duration. The emission results of B10 showed that it obtained lower THC and CO emissions, but a slightly higher NOx emission. For the 80% CNG substitution rate, the results presented lower ITE, higher THC and lower NOx emissions, comparatively.


2021 ◽  
pp. 146808742110183
Author(s):  
Jonathan Martin ◽  
André Boehman

Compression-ignition (CI) engines can produce higher thermal efficiency (TE) and thus lower carbon dioxide (CO2) emissions than spark-ignition (SI) engines. Unfortunately, the overall fuel economy of CI engine vehicles is limited by their emissions of nitrogen oxides (NOx) and soot, which must be mitigated with costly, resource- and energy-intensive aftertreatment. NOx and soot could also be mitigated by adding premixed gasoline to complement the conventional, non-premixed direct injection (DI) of diesel fuel in CI engines. Several such “dual-fuel” combustion modes have been introduced in recent years, but these modes are usually studied individually at discrete conditions. This paper introduces a mapping system for dual-fuel CI modes that links together several previously studied modes across a continuous two-dimensional diagram. This system includes the conventional diesel combustion (CDC) and conventional dual-fuel (CDF) modes; the well-explored advanced combustion modes of HCCI, RCCI, PCCI, and PPCI; and a previously discovered but relatively unexplored combustion mode that is herein titled “Piston-split Dual-Fuel Combustion” or PDFC. Tests show that dual-fuel CI engines can simultaneously increase TE and lower NOx and/or soot emissions at high loads through the use of Partial HCCI (PHCCI). At low loads, PHCCI is not possible, but either PDFC or RCCI can be used to further improve NOx and/or soot emissions, albeit at slightly lower TE. These results lead to a “partial dual-fuel” multi-mode strategy of PHCCI at high loads and CDC at low loads, linked together by PDFC. Drive cycle simulations show that this strategy, when tuned to balance NOx and soot reductions, can reduce engine-out CO2 emissions by about 1% while reducing NOx and soot by about 20% each with respect to CDC. This increases emissions of unburnt hydrocarbons (UHC), still in a treatable range (2.0 g/kWh) but five times as high as CDC, requiring changes in aftertreatment strategy.


Author(s):  
Sascha Andree ◽  
Dmitry Goryntsev ◽  
Martin Theile ◽  
Björn Henke ◽  
Karsten Schleef ◽  
...  

Abstract The simulation of a diesel natural gas dual fuel combustion process is the topic of this paper. Based on a detailed chemical reaction mechanism, which was applied for such a dual fuel combustion, the complete internal combustion engine process was simulated. Two single fuel combustion reaction mechanisms from literature were merged, to consider the simultaneous reaction paths of diesel and natural gas. N-heptane was chosen as a surrogate for diesel. The chemical reaction mechanisms are solved by applying a tabulation method using the software tool AVL Tabkin™. In combination with a Flamelet Generated Manifold (FGM) combustion model, this leads to a reduction of computational effort compared to a direct solving of the reaction mechanism, because of a decoupling of chemistry and flow calculations. Turbulence was modelled using an unsteady Reynolds-Averaged Navier Stokes (URANS) model. In comparison to conventional combustion models, this approach allows for detailed investigations of the complex ignition process of the dual fuel combustion process. The unexpected inversely proportional relationship between start of injection (SOI) and start of combustion (SOC), a later start of injection makes for an earlier combustion of the main load, is only one of these interesting combustion phenomena, which can now be analyzed in detail. Further investigations are done for different engine load points and multiple pilot injection strategies. The simulation results are confirmed by experimental measurements at a medium speed dual fuel single cylinder research engine.


2021 ◽  
pp. 146808742110419
Author(s):  
Prabhat R Jha ◽  
Kendyl R Partridge ◽  
Sundar R Krishnan ◽  
Kalyan K Srinivasan

In this study, cyclic variations in dual fuel combustion with diesel ignition of three different low reactivity fuels (methane, propane, and gasoline) are examined under identical operating conditions. Experiments were performed on a single cylinder research engine (SCRE) at a low load of 3.3 bar brake mean effective pressure (BMEP). The start of injection (SOI) of diesel was varied from 280 to 330 absolute crank angle degrees (CAD). Engine speed, rail pressure, and boost pressure were held constant at 1500 rpm, 500 bar, and 1.5 bar, respectively. The energy substituted by the low reactivity fuel was fixed at 80% of the total energy input. It was found that diesel-methane (DM) and diesel-propane (DP) combustion were affected by diesel mixing to a greater extent than diesel-gasoline (DG) combustion due to the higher reactivity of gasoline. The magnitude of low temperature heat release was greatest for DG combustion followed by DM and DP combustion for all SOIs. The ignition delay for DG combustion was the shortest, followed by DM and DP combustion. DM and DP combustion exhibited more cyclic variations than DG combustion. Cyclic variations decreased for DM and DP combustion when SOI was advanced; however, DG combustion cyclic variations remained essentially constant for all SOIs. Earlier SOIs (280, 290, 300, and 310 CAD) for DM and (280, 290, and 300 CAD) for DP combustion indicated some prior-cycle effects on the combustion and IMEP (i.e. some level of determinism).


Sign in / Sign up

Export Citation Format

Share Document