An Experimental Investigation of the Exhaust Emissions From Spark-Assisted Homogeneous Charge Compression Ignition in a Single-Cylinder Research Engine

Author(s):  
P. E. Keros ◽  
B. T. Zigler ◽  
J. T. Wiswall ◽  
S. M. Walton ◽  
M. S. Wooldridge

The present study investigates the potential impact of spark-assisted (SA) homogeneous charge compression ignition (HCCI) on pollutant exhaust gas emissions from an internal combustion engine. A single-cylinder research engine was used to compare the exhaust emissions of the engine when operated in HCCI, SA-HCCI and conventional spark ignited modes of operation. The study builds on previous results demonstrating the effects of the spark plasma kernel on the ignition process [1, 2]. Specifically, this study investigates the NOx, CO, and HC emissions from an optical engine fueled with indolene in HCCI and SA-HCCI modes at fuel lean conditions. Fuel/air equivalence ratios ranged from φ = 0.3–0.6. Time-averaged emissions were measured using an exhaust gas analyzer. In-cylinder pressure data were also acquired. The results show NOx emissions follow the trends of peak in-cylinder pressure implying that thermal NOx mechanisms dominate both the HCCI and SA-HCCI modes of engine operation. For SA-HCCI, spark timing could be used to change ignition phasing, and consequently change the in-cylinder peak pressure and resulting NOx emissions. Comparing HCCI and SA-HCCI emissions at nominally similar conditions (specifically, comparable indicated mean effective pressures and equivalence ratios) yielded similar NOx emissions. These data show that SA-HCCI may not have a NOx penalty when the spark timing is carefully applied.

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 847 ◽  
Author(s):  
Yuh-Yih Wu ◽  
Ching-Tzan Jang

Exhaust emissions from the large population of motorcycles are a major issue in Asian countries. The regulation of exhaust emissions is therefore becoming increasingly stringent, with those relating to nitrogen oxides (NOx) the most difficult to pass. The homogeneous charge compression ignition (HCCI) has special combustion characteristics and hence produces low NOx emissions and exhibits high thermal efficiency. This study developed an HCCI system for a 150 cc motorcycle engine. The target engine was modified using a dual-fuel of dimethyl ether (DME) and gasoline with exhaust gas recirculation (EGR). It was tested at 2000–4000 rpm and the analysis was focused on 2000 rpm. The DME was supplied continuously at an injection pressure of 1.5 kg/cm2. The gasoline injection rate was adjusted at a pressure of 2.5 kg/cm2. A brake-specific fuel consumption of <250 g/kW·h was achieved under a condition of air–fuel equivalence ratio (λ) < 2 and an EGR of 25%. The nitric oxide concentration was too low to measure. The brake mean effective pressure (BMEP) increased by 65.8% from 2.93 to 4.86 bar when the EGR was 0% to 25%. The combustion efficiency was close to 100% when the BMEP was >3 bar.


2019 ◽  
Vol 21 (9) ◽  
pp. 1631-1646
Author(s):  
Joshua Lacey ◽  
Karthik Kameshwaran ◽  
Zoran Filipi ◽  
Peter Fuentes-Afflick ◽  
William Cannella

Homogeneous charge compression ignition combustion is highly dependent on in-cylinder thermal conditions that are favorable to auto-ignition, and the presence of deposits can dramatically impact the in-cylinder environment. Because fuels available at the pump can differ considerably in composition, and fuel composition and the included additive package directly affect how deposits accumulate in a homogeneous charge compression ignition engine, strategies intended to bring homogeneous charge compression ignition to market must account for this fuel and additive variability. In order to investigate this impact, two oxygenated refinery stream test fuels with two different additives were run in a single cylinder homogeneous charge compression ignition engine. The two fuels had varying chemical composition; one represents a “dirty” fuel with high aromatic content that was intended to simulate a worst-case scenario for deposit growth, while the other represents a California Reformulated Gasoline Blendstock for Oxygenate Blending fuel, which is the primary constituent of pump gasoline at fueling stations across the state of California. The additive packages are typical of technologies that are commercially available to treat engine deposits. Both fuels were run in an experimental, single-cylinder homogeneous charge compression ignition engine in a passive conditioning study, during which the engine was run at steady state over a period of time in order to track changes in the homogeneous charge compression ignition combustion event as deposits accumulated in-cylinder. Both the composition and the additive influenced the structure of the combustion chamber deposit layer, but more importantly, both the rate at which the layer developed and the equilibrium thickness it achieved. The overall thickness of the combustion chamber deposit layer was found to have a significant impact on homogeneous charge compression ignition combustion phasing.


Sign in / Sign up

Export Citation Format

Share Document