Falling Film Evaporation of Pure Refrigerant HCFC123 in a Vertical Rectangular Minichannel Consisting of Offset Strip Fins

Author(s):  
Junichi Ohara ◽  
Shigeru Koyama ◽  
Ken Kuwahara

In the present study, the characteristics of heat transfer and flow patterns are experimentally investigated on the falling film evaporation of pure refrigerant HCFC123 in a vertical rectangular minichannel consisting of offset strop fins. The refrigerant liquid is supplied to the channel through 37 holes of a distributor. The liquid flowing down vertically is heated electrically from the rear wall of the channel and evaporated. To observe the flow patterns during the evaporation process directly, a transparent vinyl chloride resin plate is placed as the front wall. The experimental parameters are as follows: the mass velocity G = 28∼70 kg/(m2s), the heat flux q = 20∼50 kW/m2 and the pressure P≈ 100 kPa. It is clarified that the heat transfer coefficient α depends on G and q in the region of vapor quality x ≥ 0.3 while there is little influence of G and q in the region x ≤ 0.3. From the direct observation using a high speed video camera and a digital still camera, flow patterns are classified into five typical ones: plane liquid film, wavy liquid film, liquid film accompanied with dry patch, liquid film accompanied with dripping and liquid film accompanied with mist. Then the relation between heat transfer and flow pattern is clarified. The results of heat transfer characteristics are also compared with some previous correlation equations.

Author(s):  
Junichi Ohara ◽  
Shigeru Koyama

The characteristics of heat transfer and flow patterns are investigated experimentally for the vertical falling film evaporation of pure refrigerant HCFC123 in a rectangular minichannels consisting of offset strip fins. The refrigerant liquid is uniformly supplied to the channel through a distributor. The liquid flowing down vertically is heated electrically from the rear wall of the channel and evaporated. To observe the flow patterns during the evaporation process directly, a transparent vinyl chloride resin plate is placed as the front wall. The experimental parameters are as follows: the mass velocity G = 28∼70 kg/(m2s), the heat flux q = 20∼50 kW/m2 and the pressure P ≈ 100 kPa. It is clarified that the heat transfer coefficient α depends on G and q in the region of vapor quality x ≥ 0.3 while there is little influence of G and q in the region x ≤ 0.3. From the direct observation using a high speed video camera and a digital still camera, flow patterns are classified into five types. Then the empirical correlation equations for evaporation heat transfer coefficient on a vertical falling film plate fin evaporator with minichannels are proposed. From the physical model to evaluate the heat transfer coefficient of the minichannel surface with fins, the characteristics of fin efficiency is clarified that the average value of fin efficiency is about 0.6 and the distributive characteristics of fin efficiency is roughly inverse of heat transfer coefficient characteristics.


2012 ◽  
Vol 614-615 ◽  
pp. 296-300 ◽  
Author(s):  
Wei Kang Hu ◽  
Li Yang ◽  
Lei Hong Guo

This paper mainly studies the falling film evaporator in the field of water desalination. Using the method of fluent simulates the process of the liquid flowing and heat-transfer on the horizontal-tube falling film evaporation. The author analyses the distribution of the liquid film, and obtain the rule that spray density, evaporation temperature, temperature difference and pipe diameter affect the performance of heat-transfer in a certain range. So the paper plays a guiding role in heat transfer enhancement in the falling film evaporator.


Author(s):  
M. W. Alnaser ◽  
K. Spindler ◽  
H. Mu¨ller-Steinhagen

A test rig was constructed to investigate flow boiling in an electrically heated horizontal mini-channel array. The test section is made of copper and consists of twelve parallel mini-channels. The channels are 1 mm deep, 1 mm wide and 250 mm long. The test section is heated from underneath with six cartridge heaters. The channels are covered with a glass plate to allow visual observations of the flow patterns using a high-speed video-camera. The wall temperatures are measured at five positions along the channel axis with two resistance thermometers in a specified distance in heat flow direction. Local heat transfer coefficients are obtained by calculating the local heat flux. The working fluids are deionised water and ethanol. The experiments were performed under near atmospheric pressure (0.94 bar to 1.2 bar absolute). The inlet temperature was kept constant at 20°C. The measurements were taken for three mass fluxes (120; 150; 185 kg/m2s) at heat fluxes from 7 to 375 kW/m2. Heat transfer coefficients are presented for single phase forced convection, subcooled and saturated flow boiling conditions. The heat transfer coefficient increases slightly with rising heat flux for single phase flow. A strong increase is observed in subcooled flow boiling. At high heat flux the heat transfer coefficient decreases slightly with increasing heat flux. The application of ethanol instead of water leads to an increase of the surface temperature. At the same low heat flux flow boiling heat transfer occurs with ethanol, but in the experiments with water single phase heat transfer is still dominant. It is because of the lower specific heat capacity of ethanol compared to water. There is a slight influence of the mass flux in the investigated parameter range. The pictures of a high-speed video-camera are analysed for the two-phase flow-pattern identification.


Author(s):  
Wei Li ◽  
Xiaoyu Wu ◽  
Zhong Luo

This paper reports an experimental study on falling film evaporation of water on 6-row horizontal configured tube bundles in a vacuum. Three types of configured tubes, Turbo-CAB-19fpi and −26fpi, Korodense, including smooth tubes for reference, were tested in a range of film Reynolds number from about 10 to 110. Results show that as the falling film Reynolds number increases, falling film evaporation goes from tubes partial dryout regime to fully wet regime; the mean heat transfer coefficients reach peak values in the transition point. Turbo-CAB tubes have the best heat transfer enhancement of falling film evaporation in both regimes, but Korodense tubes’ overall performances are better when tubes are fully wet. The inlet temperature of heating water has hardly any effects on the heat transfer, but the evaporation pressure has controversial effects. A correlation with errors within 10% was also developed to predict the heat transfer enhancement capacity.


Author(s):  
Lei Wang ◽  
Weiyu Tang ◽  
Limin Zhao ◽  
Wei Li

Abstract An experimental investigation was conducted on falling film evaporation along two porous tubes, which were sintered by stainless-steel powder with a diameter of 0.45 and 1 um, respectively. The test section is a 2 m long sintered tube with an outer diameter of 25 mm and a wall thickness of 2 mm. During the experiment, the pressure inside the tube was maintained at 1 atm, the inlet temperature was 373 K, and mass flux ranged from 0.51 to 1.36 kg/ (m s). Conditions of the steam outside the pipe, which was the heat source, were fixed, while the fouling tests were carried out at a constant mass flow of 0.74 kg/ (m s) using high-concentration brine as work fluid. The overall heat transfer coefficient under different working conditions was tested and compared with the stainless steel smooth tube of the same dimensions. The heat transfer coefficient of the two porous stainless tubes are about 35% and 20% lower than that of the smooth one, showing an inferior effect because the steam in the pores of the pipe wall during the infiltration process will reduce the heat conductivity. The heat transfer coefficient of the smooth tube deteriorated severely due to the deposition of calcium carbonate, which had little effect on the sintered tubes. Besides, the fouling weight of porous tubes is 2.01 g and 0 g compared with 5.52 g of the smooth tube.


Sign in / Sign up

Export Citation Format

Share Document