Experimental Convective Heat Transfer With Nanofluids

Author(s):  
S. Kabelac ◽  
K. B. Anoop

Nanofluids are colloidal suspensions with nano-sized particles (<100nm) dispersed in a base fluid. From literature it is seen that these fluids exhibit better heat transfer characteristics. In our present work, thermal conductivity and the forced convective heat transfer coefficient of an alumina-water nanofluid is investigated. Thermal conductivity is measured by a steady state method using a Guarded Hot Plate apparatus customized for liquids. Forced convective heat transfer characteristics are evaluated with help of a test loop under constant heat flux condition. Controlled experiments under turbulent flow regime are carried out using two particle concentrations (0.5vol% and 1vol %). Experimental results show that, thermal conductivity of nanofluids increases with concentration, but the heat transfer coefficient in the turbulent regime does not exhibit any remarkable increase above measurement uncertainty.

2011 ◽  
Vol 396-398 ◽  
pp. 2234-2239
Author(s):  
Zu Ling Liu ◽  
Cheng Bo Wu ◽  
Xian Jun Wang ◽  
Zheng Rong Zhang

A comprehensive experiment was conducted for heat transfer characteristics for an array of impinging gaseous slot jets to a flat plate with strong turbulence (nozzle exit Reynolds number Re=22500~64700).Find that turbulence intensity of flow has an important influence on local forced convective heat transfer coefficient. Meanwhile, the nozzle-to-plate spacing and nozzle exit Reynolds number Re would affect the mean forced convective heat transfer coefficient of the slot jets. And heat transfer efficiency of slot jets has been set to show the relation between ability of the jets and energy consumption of gas supply.


2013 ◽  
Vol 805-806 ◽  
pp. 1278-1282
Author(s):  
Ze Feng Jing ◽  
Shu Zhong Wang ◽  
Xiang Rong Luo

Heat transfer characteristics of the CO2-based foam fracturing fluid were investigated on the large-scale test loop of foam fracturing fluid. The relationship between thermal conductivity coefficient and shear rate was introduced into the expression of the convective heat transfer coefficient. Thus the expression of the convective heat transfer coefficient of power-law fluid was revised. The results show that the convective heat transfer coefficient of the fracturing fluid increases with the increase of the pressure, the foam quality and the shear rate. The convective heat transfer coefficient of the foam fracturing fluid calculated by the revised calculation formula is highly consistent with the experimental data at low pressure. The deviation is bigger at high pressure, but still within 20%.


2011 ◽  
Vol 110-116 ◽  
pp. 393-399
Author(s):  
S.M. Sohel Murshed ◽  
C.A. Nieto de Castro ◽  
M.J.V. Lourenço ◽  
M.L.M. Lopes ◽  
F.J.V. Santos

Nanofluids have attracted great interest from researchers worldwide because of their reported superior thermal performance and many potential applications. However, there are many controversies and inconsistencies in reported experimental results of thermal conductivity, convective heat transfer coefficient and critical heat flux of nanofluids. In this paper, two major features of nanofluids, which are boiling and convective heat transfer characteristics are presented besides critically reviewing recent research and development on these areas of nanofluids.


Author(s):  
Shijo Thomas ◽  
C. B. Sobhan ◽  
Jaime Taha-Tijerina ◽  
T. N. Narayanan ◽  
P. M. Ajayan

Nanofluids are suspensions or colloids produced by dispersing nanoparticles in base fluids like water, oil or organic fluids, so as to improve their thermo-physical properties. Investigations reported in recent times have shown that the addition of nanoparticles significantly influence the thermophysical properties, such as the thermal conductivity, viscosity, specific heat and density of base fluids. The convective heat transfer coefficient also has shown anomalous variations, compared to those encountered in the base fluids. By careful selection of the parameters such as the concentration and the particle size, it has been possible to produce nanofluids with various properties engineered depending on the requirement. A mineral oil–boron nitride nanofluid system, where an increased thermal conductivity and a reduced electrical conductivity has been observed, is investigated in the present work to evaluate its heat transfer performance under natural convection. The modified mineral oil is produced by chemically dispersing boron nitride nanoparticles utilizing a one step method to obtain a stable suspension. The mineral oil based nanofluid is investigated under transient free convection heat transfer, by observing the temperature-time response of a lumped parameter system. The experimental study is used to estimate the time-dependent convective heat transfer coefficient. Comparisons are made with the base fluid, so that the enhancement in the heat transfer coefficient under natural convection situation can be estimated.


Author(s):  
Seyyed Shahabeddin Azimi ◽  
Mansour Kalbasi ◽  
Mohammad Hosain Namazi

Nanofluid is a suspension of nanoparticles (solid particles with diameters below 100 nm) in a conventional base fluid with significantly improved heat transfer characteristics compared to the original fluid. The heat transfer coefficient is a quantitative characteristic of the convective heat transfer. The purpose of this paper is to study the effect of the nanoparticle size (diameter) on the heat transfer coefficient of forced convective heat transfer of nanofluid in the fully developed laminar region of a horizontal tube. Using thermal conductivity model which is a function of the nanoparticle size, flow of a nanofluid (water + Al 2 O 3) in a circular tube submitted to a constant wall temperature is numerically investigated with two particle sizes of 11 nm and 47 nm. The calculated results show that the nanoparticle size does not significantly affect the heat transfer coefficient, however, the heat transfer coefficient decreases as the particle size increases.


Author(s):  
Ribhu Bhatia ◽  
Sambit Supriya Dash ◽  
Vinayak Malhotra

Abstract Systematic experimentation was carried out on forced convection heat transfer apparatus under varying non-linear flow conditions to understand the energy transfer as heat, with the purpose of enhancing performance of numerous engineering applications. Plate orientations, types of enclosures (solid, meshed, perforated), flow velocity variations etc. are taken as governing parameters to effect convective heat transfer phenomenon which is perceived as deviations in value of heat transfer coefficient. RV zonal system is utilized to simplify the fundamental understanding of heat transfer coefficient variation with surface orientation under varying flow field. The objectives of this work are as follows: 1) To establish relative effectiveness of forced convective heat transfer under varying flow field. 2) To investigate the implications of varying shapes and sizes of perforations on confined forced convective heat transfer. To understand the controlling mechanism and role of key controlling parameters.


Sign in / Sign up

Export Citation Format

Share Document