Simulation on the Flow and Heat Transfer Characteristics of Confined Bubbles in Micro-Channels

Author(s):  
Qingming Liu ◽  
Björn Palm ◽  
Henryk Anglart

3D simulations on confined bubbles in micro-channels with diameter of 1.24 mm were conducted. The working fluid is R134a with a mass flux range from 125kg/m2s to 375kg/m2s. The VOF model is chosen to capture the 2 phase interface while the geo-construction method was used to re-construct the 2-phase interface. A heated boundary wall with heat flux varying from 15kW/m2 to 102kW/m2 is supplied. The wall temperature was calculated. The effects of mass flux and heat flux are studied. The shape of the bubble was predicted by the simulation successfully and the results show that they are independent of the initial shape. Both thin film evaporation and micro convection enhance the heat transfer. However, the micro convection which is caused by bubble motion has greater contribution to the total heat transfer at the stage of bubble growth studied.

Author(s):  
Hui Miao ◽  
Yong Huang ◽  
Fa Xie ◽  
Haigang Chen ◽  
Fang Wang

Liquid laminar flow and heat transfer characteristics for parallel plate micro-channels consisting of many triangle shape hollows to fit with the etching surfaces are investigated numerically in the present paper. The height of the channel is 50μm, with three different relative depths, three relative spacing, and three oblique angles of the triangle surface, respectively. The 2D N-S and energy equations are solved using a commercial CFD code FLUENT6.3. Water is used as the working fluid, and the Reynolds number ranges from 100 to 1500. The global Poiseuille number and average Nusselt number are obtained. It is shown that the dented shapes cause a modest influence in Poiseuille number, but a greater impact on the Nusselt numbers. In addition, both of Po and Nu increase modestly with Re. The local Nusselt numbers are always lower in dented area and larger in planar area of dented roughness microchannels, than that of conventional smooth value. Finally, geometry parameters have modest impact on heat transfer for dented roughness.


Author(s):  
M. Hamayun Maqbool ◽  
Bjo¨rn Palm ◽  
R. Khodabandeh ◽  
Rashid Ali

Experiments have been performed to investigate heat transfer in a circular vertical mini channel made of stainless steel (AISI 316) with internal diameter of 1.70 mm and a uniformly heated length of 245 mm using ammonia as working fluid. The experiments are conducted for a heat flux range of 15 to 350 kW/m2 and mass flux range of 100 to 500 kg/m2s. The effects of heat flux, mass flux and vapour quality on the heat transfer coefficient are explored in detail. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux while mass flux and vapour quality have no considerable effect. Experimental results are compared to predictive methods available in the literature for boiling heat transfer. The correlations of Cooper et al. [1] and Shah [3] are in good agreement with our experimental data.


Author(s):  
C. Aprea ◽  
A. Greco ◽  
G. P. Vanoli

R22 is the most widely employed HCFC working fluid in vapour compression plant. HCFCs must be replaced within 2020. Major problems arise with the substitution of the working fluids, related to the decrease in performance of the plant. Therefore, extremely accurate design procedures are needed. The relative sizing of each of the components of the plant is crucial for cycle performance. For this reason, the knowledge of the new fluids heat transfer characteristics in condensers and evaporators is required. The local heat transfer coefficients and pressure drop of pure R22 and of the azeotropic mixture R507 (R125-R143a 50%/50% in weight) have been measured during convective boiling. The test section is a smooth horizontal tube made of a with a 6 mm I.D. stainless steel tube, 6 m length, uniformly heated by Joule effect. The effects of heat flux, mass flux and evaporation pressure on the heat transfer coefficients are investigated. The evaporating pressure varies within the range 3 ÷10 bar, the refrigerant mass flux within the range 200 ÷ 1000 kg/m2s, the heat flux within 0 ÷ 44 kW/m2. A comparison have been carried out between the experimental data and those predicted by means of the most credited literature relationships.


Author(s):  
X. Y. Xu ◽  
T. Ma ◽  
M. Zeng ◽  
Q. W. Wang

Due to the dramatic changes in physical properties, the flow and heat transfer in supercritical fluid are significantly affected by buoyancy effects, especially when the ratio of inlet mass flux and wall heat flux is relatively small. In this study, the heat transfer of supercritical water in uniformly heated vertical tube is numerically investigated with different buoyancy models which are based on different calculation methods of the turbulent heat flux. The applicabilities of these buoyancy models are analyzed both in heat transfer enhancement and deterioration conditions. The simulation results show that these buoyancy models make few differences and give good wall temperature prediction in heat transfer enhancement condition when the ratio of inlet mass flux and wall heat flux is very small. With the increase of wall heat flux, the accuracy of wall temperature prediction reduces, and the differences between these buoyancy models become larger. No buoyancy model can currently make accurate wall temperature prediction in deterioration condition in this study.


Author(s):  
Liang-Han Chien ◽  
Han-Yang Liu ◽  
Wun-Rong Liao

A heat sink integrating micro-channels with multiple jets was designed to achieve better heat transfer performance for chip cooling. Dielectric fluid FC-72 was the working fluid. The heat sink contained 11 micro-channels, and each channel was 0.8 mm high, 0.6 mm wide, and 12 mm in length. There were 3 or 5 pores on each micro-channel. The pore diameters were either 0.24 or 0.4 mm, and the pore spacing ranged from 1.5 to 3 mm. In the tests, the saturation temperature of cooling device was set at 30 and 50°C, and the volume flow rate ranged from 9.1 to 73.6 ml/min per channel (total flow rate = 100∼810 ml/min). The experimental result showed that heat transfer performance increased with increasing flow rate for single phase heat transfer. For heat flux between 20 and 100 kW/m2, the wall superheat decreases with increasing flow rate at a fixed heat flux. However, the influence of the flow rate diminished when the channels are in two phase heat transfer regime. Except for the lowest flow rate (9.1 ml/min), the heat transfer performance increased with increasing jet diameter/spacing ratios. The best surface had three nozzles of 0.4 mm diameter in 3.0 mm jet spacing. It had the lowest thermal resistance of 0.0611 K / W in the range of 200 ∼ 240 W heat input.


2017 ◽  
Vol 25 (02) ◽  
pp. 1750013 ◽  
Author(s):  
Pham-Quang Vu ◽  
Kwang-Il Choi ◽  
Jong-Taek Oh ◽  
Honggi Cho

The condensation heat transfer coefficients and pressure drops of R410A and R22 flowing inside a horizontal aluminum multiport mini-channel tube having 18 channels are investigated. Experimental data are presented for the range of vapor quality from 0.1 to 0.9, mass flux from 50 to 500[Formula: see text]kg/m2s, heat flux from 3 to 15[Formula: see text]kW/m2 and the saturation temperature at 48[Formula: see text]C. The pressure drop across the test section was directly measured by a differential pressure transducer. At a small scale, the noncircular cross-sections can enhance the effect of the surface tension. The average heat transfer coefficient increased with the increase of vapor quality, mass flux and heat flux. Under the same test conditions, the heat transfer coefficients of R22 are higher than those for R410A, the pressure drops for R410A are 7–19% lower than those of R22. The lower pressure drop of R410A has an important advantage as an alternative working fluid for R22 in air-conditioning and heat pump systems.


Author(s):  
Rashid Ali ◽  
Bjo¨rn Palm ◽  
Mohammad H. Maqbool

In this paper the experimental flow boiling heat transfer results of a minichannel are presented. A series of experiments was conducted to measure the heat transfer coefficients in a minichannel made of stainless steel (AISI 316) having an internal diameter of 1.7mm and a uniformly heated length of 220mm. R134a was used as working fluid and experiments were performed at two different system pressures corresponding to saturation temperatures of 27 °C and 32 °C. Mass flux was varied from 50 kg/m2 s to 600 kg/m2 s and heat flux ranged from 2kW/m2 to 156kW/m2. The test section was heated directly using a DC power supply. The direct heating of the channel ensured uniform heating and heating was continued until dry out was reached. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux while mass flux and vapour quality have no considerable effect. Increasing the system pressure slightly enhances the heat transfer coefficient. The heat transfer coefficient is reduced as dryout is reached. It is observed that dryout phenomenon is accompanied with fluctuations and a larger standard deviation in outer wall temperatures.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Rashid Ali ◽  
Björn Palm ◽  
Mohammad H. Maqbool

In this paper, the experimental flow boiling heat transfer results of a minichannel are presented. A series of experiments was conducted to measure the heat transfer coefficients in a minichannel made of stainless steel (AISI 316) having an internal diameter of 1.70 mm and a uniformly heated length of 220 mm. R134a was used as a working fluid, and experiments were performed at two different system pressures corresponding to saturation temperatures of 27°C and 32°C. Mass flux was varied from 50 kg/m2 s to 600 kg/m2 s, and heat flux ranged from 2 kW/m2 to 156 kW/m2. The test section was heated directly using a dc power supply. The direct heating of the channel ensured uniform heating, which was continued until dryout was reached. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux, while mass flux and vapor quality have no considerable effect. Increasing the system pressure slightly enhances the heat transfer coefficient. The heat transfer coefficient is reduced as dryout is reached. It is observed that the dryout phenomenon is accompanied with fluctuations and a larger standard deviation in outer wall temperatures.


2010 ◽  
Vol 58 (1) ◽  
pp. 155-163 ◽  
Author(s):  
G. Hetsroni

Boiling in micro-channelsBoiling heat transfer in micro-channels is a subject of intense academic and practical interest. Though many heat transfer correlations have been proposed, most were empirically formulated from experimental data. However, hydrodynamic and thermal aspects of boiling in micro-channels are not well understood. Moreover, there are only a few theoretical models that link the heat transfer mechanism with flow regimes in micro-channels. Also, there are discrepancies between different sets of published results, and heat transfer coefficients have either well exceeded, or fallen far below, those predicted for conventional channels. Here we consider these problems with regard to micro-channels with hydraulic diameters ranging roughly from 5 μm to 500 μm, to gain a better understanding of the distinct properties of the measurement techniques and uncertainties, the conditions under which the experimental results should be compared to analytical or numerical predictions, boiling phenomenon, as well as different types of micro-channel heat sinks. Two-phase flow maps and heat transfer prediction methods for vaporization in macro-channels are not applicable in micro-channels, because surface tension dominates the phenomena, rather than gravity forces. The models of convection boiling should correlate the frequencies, sizes and velocities of the bubbles and the coalescence processes, which control the flow pattern transitions, together with the heat flux and the mass flux. Therefore, the vapour bubble size distribution must be taken into account. The flow pattern in parallel micro-channels is quite different from that in a single micro-channel. At same values of heat and mass flux, different, time dependent, flow regimes occur in a given micro-channel. At low vapour quality, heat flux causes a sudden release of energy into the vapour bubble, which grows rapidly and occupies the entire channel cross section. The rapid bubble growth pushes the liquid-vapour interface on both caps of the vapour bubble, at the upstream and the downstream ends, and leads to a reverse flow. We term this phenomenon as explosive boiling. One of the limiting operating conditions with flow boiling is the critical heat flux (CHF). The CHF phenomenon is different from that observed in conventional size channels.


Sign in / Sign up

Export Citation Format

Share Document