Flow Boiling of R134a and R245fa in a 1.1 mm Diameter Tube

Author(s):  
Emily A. Pike-Wilson ◽  
Mohamed M. Mahmoud ◽  
Tassos G. Karayiannis

New refrigerants are required for cooling systems due to the fact that refrigerants like R134a are about to be phased out. This paper presents a comparison between the flow boiling heat transfer and pressure drop results of refrigerants R245fa and R134a. The experiments with R245fa were conducted in a vertical cold drawn stainless steel tube with an inner diameter of 1.1 mm and heated length of 150 mm. Experimental conditions include: mass flux range 100–400 kg/m2s, heat flux range 10–60 kW/m2, pressures of 8 and 10 bar and 1.9 and 2.5 bar for R134a and R245fa corresponding to saturated temperatures 31 °C and 39 °C and exit vapour quality range 0–0.95. The data for R134a were obtained earlier using the same experimental facility at the same experimental conditions and with the same test tube. The results demonstrated that refrigerant properties have a significant effect on heat transfer and pressure drop. The pressure drop of R245fa is higher by up to 300% compared to that of R134a at similar conditions. In addition, the effect of mass flux and heat flux on the local flow boiling heat transfer coefficient was different. Heat transfer coefficients of R245fa showed a greater dependence on vapour quality. The agreement with past heat transfer correlations is better with R134a than with R245fa.

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
YanFeng Fan ◽  
Ibrahim Hassan

Flow boiling heat transfer in a horizontal microtube with inlet restriction (orifice) under uniform heating condition is experimentally investigated using FC-72 as working fluid. A stainless steel microtube with an inner diameter of 889 μm is selected as main microtube. Two microtubes with smaller diameters are assembled at the inlet of main microtube to achieve the restriction ratios of 50% and 20%. The experimental measurement is carried out at mass fluxes ranging from 160 to 870 kg/m2·s, heat fluxes varying from 6 to 170 kW/m2, inlet temperatures of 23 and 35 °C, and saturation pressures of 10 and 45 kPa. The effects of the orifices on two-phase pressure drop, critical heat flux (CHF), and flow boiling heat transfer coefficient are studied. The results show that the pressure drop caused by the orifice takes a considerable portion in the total pressure drop at low mass fluxes. This ratio decreases as the vapor quality or mass flux increases. The difference of normal critical heat flux in the microtubes with different orifice sizes is negligible. In the aspect of flow boiling heat transfer, the orifice is able to enhance the heat transfer at low mass flux and high saturation pressure, which indicates the contribution of orifice in the nucleate boiling dominated regime. However, the effect of orifice on flow boiling heat transfer is negligible in the forced convective boiling dominated regime.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Chang Yong Park ◽  
Pega Hrnjak

Abstract C O 2 flow boiling heat transfer coefficients and pressure drop in a 3.5mm horizontal smooth tube are presented. Also, flow patterns were visualized and studied at adiabatic conditions in a 3mm glass tube located immediately after a heat transfer section. Heat was applied by a secondary fluid through two brass half cylinders to the test section tubes. This research was performed at evaporation temperatures of −15°C and −30°C, mass fluxes of 200kg∕m2s and 400kg∕m2s, and heat flux from 5kW∕m2 to 15kW∕m2 for vapor qualities ranging from 0.1 to 0.8. The CO2 heat transfer coefficients indicated the nucleate boiling dominant heat transfer characteristics such as the strong dependence on heat fluxes at a mass flux of 200kg∕m2s. However, enhanced convective boiling contribution was observed at 400kg∕m2s. Surface conditions for two different tubes were investigated with a profilometer, atomic force microscope, and scanning electron microscope images, and their possible effects on heat transfer are discussed. Pressure drop, measured at adiabatic conditions, increased with the increase of mass flux and quality, and with the decrease of evaporation temperature. The measured heat transfer coefficients and pressure drop were compared with general correlations. Some of these correlations showed relatively good agreements with measured values. Visualized flow patterns were compared with two flow pattern maps and the comparison showed that the flow pattern maps need improvement in the transition regions from intermittent to annular flow.


Author(s):  
Cheol Huh ◽  
Moo Hwan Kim

With a single microchannel and a series of microheaters made with MEMS technique, two-phase pressure drop and local flow boiling heat transfer were investigated using deionized water in a single horizontal rectangular microchannel. The test microchannel has a hydraulic diameter of 100 μm and length of 40 mm. A real time observation of the flow patterns with simultaneous measurement are made possible. Tests are performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes of from 100 to 600 kW/m2. The experimental local flow boiling heat transfer coefficients and two-phase frictional pressure gradient are evaluated and the effects of heat flux, mass flux, and vapor qualities on flow boiling are studied. Both the evaluated experimental data are compared with existing correlations. The experimental heat transfer coefficients are nearly independent on mass flux and the vapor quality. Most of all correlations do not provide reliable heat transfer coefficients predictions with vapor quality and prediction accuracy. As for two-phase pressure drop, the measured pressure drop increases with the mass flux and heat flux. Most of all existing correlations of two-phase frictional pressure gradient do not predict the experimental data except some limited conditions.


Author(s):  
Bao Truong ◽  
Lin-wen Hu ◽  
Jacopo Buongiorno ◽  
Thomas McKrell

Nanofluids are engineered colloidal dispersions of nano-sized particle in common base fluids. Previous pool boiling studies have shown that nanofluids can improve critical heat flux (CHF) up to 200% for pool boiling and up to 50% for subcooled flow boiling due to the boiling induced nanoparticle deposition on the heated surface. Motivated by the significant CHF enhancement of nanoparticle deposited surface, this study investigated experimentally the subcooled flow boiling heat transfer of pre-coated test sections in water. Using a separate coating loop, stainless steel test sections were treated via flow boiling of alumina nanofluids at constant heat flux and mass flow rate. The pre-coated test sections were then used in another loop to measure subcooled flow boiling heat transfer coefficient and CHF with water. The CHF values for the pre-coated tubing were found on average to be 28% higher than bare tubing at high mass flux G = 2500 kg/m2 s. However, no enhancement was found at lower mass flux G = 1500 kg/m2 s. The heat transfer coefficients did not differ much between experiments when the bare or coated tubes were used. SEM images of the test sections confirm the presence of a nanoparticle coating layer. The nanoparticle deposition is sporadic and no relationship between the coating pattern and the amount of CHF enhancement is observed.


Author(s):  
K. S. Park ◽  
W. H. Choo ◽  
K. H. Bang

The flow boiling heat transfer coefficient of R-22 in small hydraulic diameter tubes has been experimentally studied. Both brass and aluminum round tubes of 1.66 mm inside diameter are used for the test section. The ranges of the major experimental parameters are 300∼600 kg/m2s of refrigerant mass flux, 10∼20 kW/m2 of the wall heat flux, 0.0∼0.9 of the inlet vapor quality. The experimental result showed that the flow boiling heat transfer coefficient in this small tubes are in the range of 2∼4 kW/m2K and it varies only by heat flux, independent of mass flux and vapor quality. It is also observed that the heat transfer coefficients in the aluminum tube are up to 50% higher than in the brass tube.


Author(s):  
Giovanni A. Longo ◽  
Simone Mancin ◽  
Giulia Righetti ◽  
Claudio Zilio

AbstractR134a was recognized as probably one of the most important refrigerants of the two past decades. Among the proposed alternative fluids, there are certainly isobutane (R600a) and R152a. This article presents about 200 new heat transfer coefficient and pressure drop data obtained during flow boiling of R152a and R600a inside a smooth copper tube having an internal diameter of 4 mm. Three saturation temperatures were considered for each refrigerant, from 5 °C to 20 °C. Furthermore, for each temperature studied, the heat flux was varied between 15 and 30 kW m−2 and the refrigerant mass flux from 100 to 400 kg m−2 s−1. After presenting the new data, a critical comparison was proposed between the performance of these refrigerants and R134a. Finally, some classic correlations available in the literature have been implemented. The deviations between the calculated and experimental values were reported and commented.


Author(s):  
Rashid Ali ◽  
Bjo¨rn Palm ◽  
Mohammad H. Maqbool

In this paper the experimental flow boiling heat transfer results of a minichannel are presented. A series of experiments was conducted to measure the heat transfer coefficients in a minichannel made of stainless steel (AISI 316) having an internal diameter of 1.7mm and a uniformly heated length of 220mm. R134a was used as working fluid and experiments were performed at two different system pressures corresponding to saturation temperatures of 27 °C and 32 °C. Mass flux was varied from 50 kg/m2 s to 600 kg/m2 s and heat flux ranged from 2kW/m2 to 156kW/m2. The test section was heated directly using a DC power supply. The direct heating of the channel ensured uniform heating and heating was continued until dry out was reached. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux while mass flux and vapour quality have no considerable effect. Increasing the system pressure slightly enhances the heat transfer coefficient. The heat transfer coefficient is reduced as dryout is reached. It is observed that dryout phenomenon is accompanied with fluctuations and a larger standard deviation in outer wall temperatures.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Rashid Ali ◽  
Björn Palm ◽  
Mohammad H. Maqbool

In this paper, the experimental flow boiling heat transfer results of a minichannel are presented. A series of experiments was conducted to measure the heat transfer coefficients in a minichannel made of stainless steel (AISI 316) having an internal diameter of 1.70 mm and a uniformly heated length of 220 mm. R134a was used as a working fluid, and experiments were performed at two different system pressures corresponding to saturation temperatures of 27°C and 32°C. Mass flux was varied from 50 kg/m2 s to 600 kg/m2 s, and heat flux ranged from 2 kW/m2 to 156 kW/m2. The test section was heated directly using a dc power supply. The direct heating of the channel ensured uniform heating, which was continued until dryout was reached. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux, while mass flux and vapor quality have no considerable effect. Increasing the system pressure slightly enhances the heat transfer coefficient. The heat transfer coefficient is reduced as dryout is reached. It is observed that the dryout phenomenon is accompanied with fluctuations and a larger standard deviation in outer wall temperatures.


Sign in / Sign up

Export Citation Format

Share Document