Pore-Scale Simulation for Predicting Material Transport Through Porous Media

Author(s):  
Goichi Itoh ◽  
Jinya Nakamura ◽  
Koji Kono ◽  
Tadashi Watanabe ◽  
Hirotada Ohashi ◽  
...  

Microscopic models of real-coded lattice gas automata (RLG) method with a special boundary condition and lattice Boltzmann method (LBM) are developed for simulating three-dimensional fluid dynamics in complex geometry. Those models enable us to simulate pore-scale fluid dynamics that is an essential part for predicting material transport in porous media precisely. For large-scale simulation of porous media with high resolution, the RLG and LBM programs are designed for parallel computation. Simulation results of porous media flow by the LBM with different pressure gradient conditions show quantitative agreements with macroscopic relations of Darcy’s law and Kozeny-Carman equation. As for the efficiency of parallel computing, a standard parallel computation by using MPI (Message Passing Interface) is compared with the hybrid parallel computation of MPI-node parallel technique. The benchmark tests conclude that in case of using large number of computing node, the parallel performance declines due to increase of data communication between nodes and the hybrid parallel computation totally shows better performance in comparison with the standard parallel computation.

Author(s):  
Mosayeb Shams ◽  
Kamaljit Singh ◽  
Branko Bijeljic ◽  
Martin J. Blunt

AbstractThis study focuses on direct numerical simulation of imbibition, displacement of the non-wetting phase by the wetting phase, through water-wet carbonate rocks. We simulate multiphase flow in a limestone and compare our results with high-resolution synchrotron X-ray images of displacement previously published in the literature by Singh et al. (Sci Rep 7:5192, 2017). We use the results to interpret the observed displacement events that cannot be described using conventional metrics such as pore-to-throat aspect ratio. We show that the complex geometry of porous media can dictate a curvature balance that prevents snap-off from happening in spite of favourable large aspect ratios. We also show that pinned fluid-fluid-solid contact lines can lead to snap-off of small ganglia on pore walls; we propose that this pinning is caused by sub-resolution roughness on scales of less than a micron. Our numerical results show that even in water-wet porous media, we need to allow pinned contacts in place to reproduce experimental results.


2021 ◽  
Author(s):  
Marco Dentz ◽  
Alexandre Puyguiraud ◽  
Philippe Gouze

<p>Transport of dissolved substances through porous media is determined by the complexity of the pore space and diffusive mass transfer within and between pores. The interplay of diffusive pore-scale mixing and spatial flow variability are key for the understanding of transport and reaction phenomena in porous media. We study the interplay of pore-scale mixing and network-scale advection through heterogeneous porous media, and its role for the evolution and asymptotic behavior of hydrodynamic dispersion. In a Lagrangian framework, we identify three fundamental mechanisms of pore-scale mixing that determine large scale particle motion: (i) The smoothing of intra-pore velocity contrasts, (ii) the increase of the tortuosity of particle paths, and (iii) the setting of a maximum time for particle transitions. Based on these mechanisms, we derive an upscaled approach that predicts anomalous and normal hydrodynamic dispersion based on the characteristic pore length, Eulerian velocity distribution and Péclet number. The theoretical developments are supported and validated by direct numerical flow and transport simulations in a three-dimensional digitized Berea sandstone sample obtained using X-Ray microtomography. Solute breakthrough curves, are characterized by an intermediate power-law behavior and exponential cut-off, which reflect pore-scale velocity variability and intra-pore solute mixing. Similarly, dispersion evolves from molecular diffusion at early times to asymptotic hydrodynamics dispersion via an intermediate superdiffusive regime. The theory captures the full evolution form anomalous to normal transport behavior at different Péclet numbers as well as the Péclet-dependence of asymptotic dispersion. It sheds light on hydrodynamic dispersion behaviors as a consequence of the interaction between pore-scale mixing and Eulerian flow variability. </p>


Author(s):  
Roozbeh (Ross) Salary ◽  
Jack P. Lombardi ◽  
Darshana L. Weerawarne ◽  
Prahalada K. Rao ◽  
Mark D. Poliks

The objective of this work is to forward a 3D computational fluid dynamics (CFD) model to explain the aerodynamics behind aerosol transport and deposition in aerosol jet printing (AJP). The CFD model allows for: (i) mapping of velocity fields as well as particle trajectories; and (ii) investigation of post-deposition phenomena of sticking, rebounding, spreading, and splashing. The complex geometry of the deposition head was modeled in the ANSYS-Fluent environment, based on a patented design as well as accurate measurements, obtained from 3D X-ray CT imaging. The entire volume of the geometry was subsequently meshed, using a mixture of smooth and soft quadrilateral elements, with consideration of layers of inflation to obtain an accurate solution near the walls. A combined approach — based on the density-based and pressure-based Navier-Stokes formation — was adopted to obtain steady-state solutions and to bring the conservation imbalances below a specified linearization tolerance (10−6). Turbulence was modeled, using the realizable k-ε viscose model with scalable wall functions. A coupled two-phase flow model was set up to track a large number of injected particles. The boundary conditions were defined based on experimental sensor data. A single-factor factorial experiment was conducted to investigate the influence of sheath gas flow rate (ShGFR) on line morphology, and also validate the CFD model.


Author(s):  
Ching-Wei Huang ◽  
Vishal Srikanth ◽  
Haodong Li ◽  
Andrey V. Kuznetsov

Abstract Turbulent flow in a homogeneous porous medium was investigated through the use of numerical methods by employing the Reynolds Averaged Navier-Stokes (RANS) modeling technique. The focus of our research was to study how microscopic vortices in porous media flow influence the heat transfer from the solid obstacles comprising the porous medium to the fluid. A Representative Elementary Volume (REV) with 4 × 4 cylindrical obstacles and periodic boundary conditions was used to represent the infinite porous medium structure. Our hypothesis is that the rate of heat transfer between the obstacle surface and the fluid (qavg) is strongly influenced by the size of the contact area between the vortices and the solid obstacles in the porous medium (Avc). This is because vortices are regions with low velocity that form an insulating layer on the surface of the obstacles. Factors such as the porosity (φ), Pore Scale Reynolds number (Rep), and obstacle shape of the porous medium were investigated. All three of these factors have different influences on the contact area Avc, and, by extension, the overall heat transfer rate qavg. Under the same Pore Scale Reynolds number (Rep), our results suggest that a higher overall heat transfer rate is exhibited for smaller contact areas between the vortices and the obstacle surface. Although the size of the contact area, Avc, is affected by Rep, the direct influence of Rep on the overall heat transfer rate qavg is much stronger, and exceeds the effect of Avc on qavg. The Pore Scale Reynolds number, Rep, and the mean Nusselt number, Num, have a seemingly logarithmic relationship.


2021 ◽  
Vol 927 ◽  
Author(s):  
Yue Gao ◽  
Emmanuel Detournay

A two-dimensional model of a hydraulic fracture propagating in a weakly consolidated, highly permeable reservoir rock during a waterflooding operation is described in this paper. The model recognizes the essential differences that exist between this class of fractures and conventional hydraulic fracturing treatments of oil and gas wells, namely: (i) the large-scale perturbations of pore pressure and the associated poroelastic effects caused by extended injection time; (ii) the extremely small volume of fluid stored in the fracture compared with the injected volume; and (iii) the leakage of water from both the borehole and the propagating fracture. The model consists of a set of equations encompassing linear elastic fracture mechanics, porous media flow and lubrication theory. Three asymptotic solutions applicable at different time regimes are found theoretically, and numerical results are obtained from the discretized governing equations. The solution reveals that the injection pressure does not evolve monotonically, as it increases with time in the early time radial-flow regime but decreases in the late time fracture-flow regime. Thus, the peak injection pressure does not correspond to a breakdown of the formation, as usually assumed, but rather to a transition between two regimes of porous media flow. However, this problem exhibits an extreme sensitivity of the time scales on a dimensionless injection rate $\mathcal {I}$ . If $\mathcal {I} \lessapprox 1$ , the time to reach the peak pressure could become so large that it cannot be observed in field operations, i.e. the fracture remains hydraulically invisible. Finally, it is found that poroelasticity significantly affects the response of the system, by increasing the injection pressure and delaying the time at which the peak pressure takes place.


Sign in / Sign up

Export Citation Format

Share Document