Macroscopic Streaming Associated With Vertical, Cyclic Motion of Interface Confined in a Cylindrical Enclosure

Author(s):  
Jun Shimizu ◽  
Takahiro Ito ◽  
Yoshiyuki Tsuji ◽  
Yutaka Kukita

The interface between overlaid fluids can become unstable when the fluids are excited vertically. The instability caused by the variation in the vertical acceleration is known by the name of the Faraday waves. Ito et al. (1999) studied a combined excitation problem where the fluids were excited vertically in a stationary cylinder while the interface motion was restricted by the mobility of the fluid-fluid-wall contact line. They found that, under such circumstances, the symmetric fundamental mode grows on the interface, even for excitation amplitude and frequency falling in the stable regime of the Faraday wave instability. Furthermore, they found that the contact line exhibits stick-slip-like motion for the combination of fluids and wall material used in their experiments (water and kerosene oil in a cylinder made of acrylic resin). In this paper, we describe and discuss the fluid motions associated with the excitation of fluids and interface wave. It is shown that a unidirectional flow (macroscopic streaming) is induced below the center of the interface when it is excited vertically to produce axisymmetric wave of large amplitudes. This unidirectional, jet-like flow induces a large-scale recirculating flow which extends several cylinder diameters away from the interface, a spatial scale considerably greater than the wavelength or amplitude of the interface waves, and has a time scale much greater than the excitation interval. It is shown that the phase angle between the wave-induced fluid motion and the fluid motion associated with the viscous force along the interface plays an important role in establishing the large scale stream motion of the fluids.

Author(s):  
Jun Shimizu ◽  
Takahiro Ito ◽  
Yoshiyuki Tsuji ◽  
Yutaka Kukita

The interface between overlaid fluids can become unstable when the fluids are excited vertically. Ito et al. (1999) studied a combined excitation problem where the fluids were excited vertically in a stationary cylinder while the interface motion was restricted by the mobility of the fluid-fluid-wall contact line. They found that the contact line exhibits stick-slip-like motion for the combination of fluids and wall material used in their experiments (water and kerosene oil in a cylinder made of acrylic resin). The flow above and beneath the interface is visualized by adding small particles. A vertical, diametral cross section of the test section is illuminated by a 509-nm Argon laser sheet. The experimental data presented in this paper were taken using ‘EXPANCEL’ particle tracer with a typical diameter of 10 µm, added to the water above and beneath the interface. Pictures are taken by a high-speed CCD camera at a rate of 120 frame/s. Each uninterlaced (120 frame/s) video frame is divided into 640 × 480 pixels for image processing. The fluid velocity is obtained for each 2.95 mm × 2.95 mm area by using the PIV technique. Visualization studies have revealed that the nonuniform velocity distribution above and below the interface extends to a much greater depth than the wave amplitude. Streamlines were taken by using Rhodamine-B fluorescent dye which was added to water beneath the interface and excited with an Ar laser fan beam, with a CCD camera.


Author(s):  
Toru Koso ◽  
Hiroyuki Iwashita ◽  
Fumihiko Usuki

The turbulent mixing of liquid mass caused by an air bubble rising near a wall in a still liquid in a pipe is investigated experimentally using a photochromic dye. A part of the liquid is activated by UV light and subjected to the fluid motion caused by a zigzag rising bubble of which Reynolds number is 214. The visualized mixing patterns showed that the dye is mixed by vortex motions in the bubble wake that is similar to the case of a bubble rising in the center of the pipe. The concentration distributions were deduced from the dye images using Lambert-Beer’s law and the turbulent diffusion coefficient (TDC) was evaluated from the temporal changes in the mass dispersion. The TDCs showed that a near-wall bubble generates stronger mixing than for a bubble in the center of the pipe. This stronger mixing can be attributed to the large-scale vortices observed for a near-wall bubble, which remains active for a longer time due to the lack of oppositely rotating vortices and mixes more fluids.


Soft Matter ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 454-461 ◽  
Author(s):  
Tadashi Kajiya ◽  
Adrian Daerr ◽  
Tetsuharu Narita ◽  
Laurent Royon ◽  
François Lequeux ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Federica Paglialunga ◽  
François Passelègue ◽  
Fabian Barras ◽  
Mathias Lebihain ◽  
Nicolas Brantut ◽  
...  

<p>Potential energy stored during the inter-seismic period by tectonic loading around faults can be released through earthquakes as radiated energy, heat and rupture energy. The latter is of first importance, since it controls both the nucleation and the propagation of the seismic rupture. On one side, the rupture energy estimated for natural earthquakes (also called Breakdown work) ranges between 1 J/m<sup>2</sup> and tens of MJ/m<sup>2</sup> for the largest events, and shows a clear slip dependence. On the other side, recent experimental studies highlighted that at the scale of the laboratory, rupture energy is a material property (energy required to break the fault interface), limited by an upper bound value corresponding to the rupture energy of the intact material (1 to 10 kJ/m<sup>2</sup>), independently of the size of the event, i.e. of the seismic slip.</p><p>To reconcile these contradictory observations, we performed stick-slip experiments, as an analog for earthquakes, in a bi-axial shear configuration. We analyzed the fault weakening during frictional rupture by accessing to the on-fault (1 mm away) stress-slip curve through strain-gauge array. We first estimated rupture energy by comparing the experimental strain with the theoretical predictions from both Linear Elastic Fracture Mechanics (LEFM) and the Cohesive Zone Model (CZM). Secondly, we compared these values to the breakdown work obtained from the integration of the stress-slip curve. Our results showed that, at the scale of our experiments, fault weakening is divided into two stages; the first one, corresponding to an energy of few J/m<sup>2</sup>, coherent with the estimated rupture energy (by LEFM and CZM), and a long-tailed weakening corresponding to a larger energy not observable at the rupture tip.</p><p>Using a theoretical analysis and numerical simulations, we demonstrated that only the first weakening stage controls the nucleation and the dynamics of the rupture tip. The breakdown work induced by the long-tailed weakening can enhance slip during rupture propagation and can allow the rupture to overcome stress heterogeneity along the fault. Additionally, we showed that at a large scale of observation the dynamics of the rupture tip can become controlled by the breakdown work induced by the long-tailed weakening, leading to a larger stress singularity at the rupture tip which becomes less sensitive to stress perturbations. We suggest that while the onset of frictional motions is related to fracture, natural earthquakes propagation is driven by frictional weakening with increasing slip, explaining the large values of estimated breakdown work for natural earthquakes, as well as the scale dependence in the dynamics of rupture.</p>


2001 ◽  
Vol 15 (09) ◽  
pp. 1287-1303 ◽  
Author(s):  
HAI-PING FANG ◽  
LE-WEN FAN ◽  
ZUO-WEI WANG ◽  
ZHI-FANG LIN ◽  
YUE-HONG QIAN

The multicomponent nonideal gas lattice Boltzmann model by Shan and Chen (S-C) is used to study the immiscible displacement in a sinusoidal tube. The movement of interface and the contact point (contact line in three-dimension) is studied. Due to the roughness of the boundary, the contact point shows "stick-slip" mechanics. The "stick-slip" effect decreases as the speed of the interface increases. For fluids that are non-wetting, the interface is almost perpendicular to the boundaries at most time, although its shapes at different position of the tube are rather different. When the tube becomes narrow, the interface turns a complex curves rather than remains simple menisci. The velocity is found to vary considerably between the neighbor nodes close to the contact point, consistent with the experimental observation that the velocity is multi-values on the contact line. Finally, the effect of three boundary conditions is discussed. The average speed is found different for different boundary conditions. The simple bounce-back rule makes the contact point move fastest. Both the simple bounce-back and the no-slip bounce-back rules are more sensitive to the roughness of the boundary in comparison with the half-way bounce-back rule. The simulation results suggest that the S-C model may be a promising tool in simulating the displacement behaviour of two immiscible fluids in complex geometry.


2008 ◽  
Vol 605 ◽  
pp. 59-78 ◽  
Author(s):  
XIAO-PING WANG ◽  
TIEZHENG QIAN ◽  
PING SHENG

We simulate the moving contact line in two-dimensional chemically patterned channels using a diffuse-interface model with the generalized Navier boundary condition. The motion of the fluid–fluid interface in confined immiscible two-phase flows is modulated by the chemical pattern on the top and bottom surfaces, leading to a stick–slip behaviour of the contact line. The extra dissipation induced by this oscillatory contact-line motion is significant and increases rapidly with the wettability contrast of the pattern. A critical value of the wettability contrast is identified above which the effect of diffusion becomes important, leading to the interesting behaviour of fluid–fluid interface breaking, with the transport of the non-wetting fluid being assisted and mediated by rapid diffusion through the wetting fluid. Near the critical value, the time-averaged extra dissipation scales as U, the displacement velocity. By decreasing the period of the pattern, we show the solid surface to be characterized by an effective contact angle whose value depends on the material characteristics and composition of the patterned surfaces.


2006 ◽  
Vol 128 (4) ◽  
pp. 681-696 ◽  
Author(s):  
P. Samyn ◽  
W. Van Paepegem ◽  
J. S. Leendertz ◽  
A. Gerber ◽  
L. Van Schepdael ◽  
...  

Polymer composites are increasingly used as sliding materials for high-loaded bearings, however, their tribological characteristics are most commonly determined from small-scale laboratory tests. The static strength and dynamic coefficients of friction for polyester/polyester composite elements are presently studied on large-scale test equipment for determination of its bearing capacity and failure mechanisms under overload conditions. Original test samples have a diameter of 250 mm and thickness of 40 mm, corresponding to the practical implementation in the sliding surfaces of a ball-joint, and are tested at various scales for simulation of edge effects and repeatability of test results. Static tests reveal complete elastic recovery after loading to 120 MPa, plastic deformation after loading at 150 MPa and overload at 200 MPa. This makes present composite favorable for use under high loads, compared to, e.g., glass-fibre reinforced materials. Sliding tests indicate stick-slip for pure bulk composites and more stable sliding when PTFE lubricants are added. Dynamic overload occurs above 120 MPa due to an expansion of the nonconstrained top surface. A molybdenum-disulphide coating on the steel counterface is an effective lubricant for lower dynamic friction, as it favorably impregnates the composite sliding surface, while it is not effective at high loads as the coating is removed after sliding and high initial static friction is observed. Also a zinc phosphate thermoplastic coating cannot be applied to the counterface as it adheres strongly to the composite surface with consequently high initial friction and coating wear. Most stable sliding is observed against steel counterfaces, with progressive formation of a lubricating transfer film at higher loads due to exposure of PTFE lubricant. Composite wear mechanisms are mainly governed by thermal degradation of the thermosetting matrix (max. 162°C) with shear and particle detachment by the brittle nature of polyester rather than plastic deformation. The formation of a sliding film protects against fiber failure up to 150 MPa, while overload results in interlaminar shear, debonding, and ductile fiber pull-out.


2011 ◽  
Vol 94-96 ◽  
pp. 1941-1945
Author(s):  
Yi Wu ◽  
Chun Yang ◽  
Jian Cai ◽  
Jian Ming Pan

Elasto-plastic analysis of seismic responses of valve hall structures were carried out by using finite element software, and the effect of seismic waves on the seismic responses of the valve hall structures and suspension equipments were studied. Results show that significant torsional responses of the structure can be found under longitudinal and 3D earthquake actions. Under 3D earthquake actions, the seismic responses of the suspension valves are much more significant than those under 1D earthquake actions, the maximum tensile force of the suspenders is about twice of that under 1D action. The seismic responses of the suspension valves under vertical earthquake actions are much stronger than those under horizontal earthquake actions, when suffering strong earthquake actions; the maximum vertical acceleration of the suspension valves is about 4 times of that under horizontal earthquake actions. It is recommended that the effects of 3D earthquake actions on the structure should be considered in seismic response analysis of the valve hall structure.


2019 ◽  
Vol 540 ◽  
pp. 544-553
Author(s):  
C.A. Fuentes ◽  
M. Hatipogullari ◽  
S. Van Hoof ◽  
Y. Vitry ◽  
S. Dehaeck ◽  
...  

Author(s):  
Kyoji Inaoka ◽  
Kouji Kawakami ◽  
Yoshi Nishii ◽  
Mamoru Senda

Flow modification downstream of a backward-facing step has been tried in order to achieve heat transfer enhancement by introducing two kinds of devices, a triangle prism rib and electromagnetic actuators, on the step edge. The triangle rib attached to the side-wall corner makes the downward flow inclined and generates a circulation-like fluid motion behind it. Because both flows work effective in reducing the flow re-circulation caused behind the step, large heat transfer recovery is obtained near the side-wall. This advantage of the triangle rib remains effective when the flap actuations are imposed. Thus, the large-scale unsteady vortex intensively reduces the flow recirculation, the triangle rib with flap actuations attains the largest heat transfer recovery behind the step.


Sign in / Sign up

Export Citation Format

Share Document