Refurbishment of Secondary System and High AVT Water Treatment of Genkai #1 and #2

Author(s):  
Jun Manabe ◽  
Yasuhiko Shoda ◽  
Tatsushi Yamamura ◽  
Yuuichirou Kusumoto

Kyushu electric co. Genkai #1 and #2 are twin 500 Mw class first generation PWR power stations starting their commercial operation in 1975–1981. The units were recently altered their secondary water treatment from AVT to HAVT (High All Volatile Treatment) operation aiming to suppress erosion in piping and equipment, resulting in feed water iron concentration reduction to around 1 ppb as indication of the effects. The units had been successfully operated from the start of their commercial operation except for scale adhesion to SG and others, degradation of copper alloy material tubes in auxiliary heat exchangers and lower condenser vacuum derived from protective ferrous sulfate coating. Life cycle management program was implemented resulting in the alteration of water treatment to HAVT adopting the SG blow down demineralizing and the replacement of copper alloy tube heat exchangers to stainless steel and titan tubes. Further more the examination results were introduced, of the scale adhesion mechanism in the high temperature region of the secondary system based on actual plants iron characterization data and field examination results of HAVT of Genkai units, expecting HAVT application would be effective for the scale adhesion reduction.

Alloy Digest ◽  
1985 ◽  
Vol 34 (9) ◽  

Abstract Copper Alloy No. C70400 is a 5.5% nickel-copper alloy characterized by resistance to corrosion by high-velocity seawater, resistance to stress-corrosion cracking, and retention of strength at moderately elevated temperatures. It responds well to both hot and cold-working operations. Among its many uses are springs, switches, heat exchangers, salt-water piping and relays. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-500. Producer or source: Copper and copper alloy mills.


2013 ◽  
Vol 5 (6) ◽  
pp. 655-658
Author(s):  
Egidijus Mykolaitis ◽  
Andrius Styra ◽  
Vladas Vekteris

Iron is one of the most common elements in ground water. Bythe HN 24:2003 iron concentration in water can‘t be higher than200 μg/l. Water treatment with an acoustic field is a very relevanttopic. Acoustic field is widely used in industrion, medicine,chemical industry and manufacturing. When water is affectedby ultrasound, physical-chemical processes begin. Ultrasoundvibrations lead to dispersion, degasation and coagulation. Ironparticles connect to each other when distance between them istwo times bigger then their own radius. R = 2R. And if thisprocess continues particles connect one by one. In this article teststand and methodics using ultrasonic piezoceramic are shown. Santrauka Geležis – dažniausiai požeminiuose vandenyse aptinkama priemaiša, kuri prastina geriamojo vandens savybes, todėl būtina bendrosios geležies koncentraciją sumažinti iki 0,2 mg/l. Vienas iš geležies šalinimo būdu yra paremtas ultragarso panaudojimu. Straipsnyje glaustai aptarti bendrosios geležies būviai vandenyje, jos šalinimo metodai ir pateikta eksperimentinė metodika. Eksperimentas atliktas naudojant skirtingų dažnių garso bangas nuo 8 kHz iki 20 kHz diapazone. Akustinio lauko daromai įtakai nustatyti, naudojant skirtingų dažnių garso bangas, buvo panaudoti trys skirtingi vandens debitai. Iš gautų rezultatų suformuluotos išvados.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1965 ◽  
Author(s):  
Skoczko ◽  
Szatyłowicz

The aim of the study was the assessment of corrosivity and aggressiveness for boiler feed water. The negative effects of water corrosivity and aggressiveness may include silting up of the steel water supply system and the destruction of boiler equipment touched or washed by such water. They may cause the whole industrial production system to fail or be destroyed. That is why it was important to reach a high water purification level, including the calculation of water aggressiveness and corrosivity indicators. The carried out test showed that the simple system used before the modernization of the industrial water treatment plant is not sufficient to reach clean and stable water. The authors proposed modernization, including additional processes to improve boiler water quality, and designed new devices for water treatment. As a result of the new idea, groundwater taken as raw water was treated in individual and complex processes, such as pre-aeration, filtration, ion exchange (cation and anion exchange resigns), extra aeration, and extra degassing. The conducted research included chemical analyses of raw and treated water. In the conducted studies, the indirect method of water aggressiveness and corrosivity assessment was applied using mathematical calculation of the Langelier Saturation Index (LSI), the Ryznar Stability Index (RI), the Larson–Skold Index (LI), and the Singley Index (SI). The results proved that the new proposed processes for the boiler feed water treatment station allow reaching a high water quality and low level of water aggressiveness and corrosion.


Author(s):  
Suyog Patil ◽  
Anand Bewoor ◽  
Rajkumar Patil

Abstract The demand of steam in process industries is increasing rapidly, and this demand can be met by increasing the capacity utilization of steam boilers. Many of the process industries depend on industrial steam boilers as a vital component for their operation. The availability of the boiler can be improved by identifying critical mechanical sub-systems/components concerning failure frequency, reliability, and maintainability and minimizing their likelihood of occurrences. The selection of appropriate technique for data collection and reliability analysis is essential. The time between failure (TBF) and time to repair (TTR) of all components and sub-systems were collected to carry out Reliability, Availability and Maintainability (RAM) analysis. The best-fit distribution and distribution parameters were calculated using ReliaSoft software Weibull++10 after performing trend testing. The preventive maintenance intervals of all components and sub-systems and the availability of the system were evaluated. The analysis reveals that the combustion system, feed-water system, and blow-down system are the critical sub-systems from a reliability perspective and are still the biggest reasons for the boiler downtime. The research study also showed that TTR was longer for the combustion system than the other sub-systems, and thus, to enhance its availability, it is suggested that maintenance resources should be allocated at the appropriate moment to the combustion system. The study also shows the usage of RAM analysis in deciding the preventive maintenance intervals of components/sub-systems of the boiler. It also provides a reference for the preparation of the maintenance plan for the boiler system.


Sign in / Sign up

Export Citation Format

Share Document