Sensitivity Investigation of Specimen Shape on Elastic Behaviour of Perforated Plate

Author(s):  
Chang-Hoon Ha ◽  
Tae-Jung Park ◽  
Moo-Yong Kim ◽  
Kwang-Sang Seon ◽  
Jae-Mean Koo ◽  
...  

There are various types of tube support plates installed in a steam generator according to the component designer’s preference. Most widely used types of tube support plates are BTSP (broached tube support plate), ATSG (advanced tube support grid), and the eggcrate. In this study, trefoil BTSP specimens made of ASME stainless steel are analyzed and tested. This study is to investigate the effect of specimen shape on an elastic behavior of trefoil BTSP through the compression and bending tests. Prior to the compression and bending tests of BTSP specimens, the equivalent elastic properties of BTSP unit cell are analyzed by the finite element analysis according to the different loading orientation as well as size of the model. Autodesk® Inventor™ software was used to make an analytical model and ANSYS® software was used for the finite element analysis and post-processing. Five and three different shapes of trefoil BTSP specimens are machined and utilized for the compression and bending (4-point and 3-point side bending) tests, respectively. Through the finite element analyses, compression, and bending tests, the equivalent elastic modulus of trefoil BTSP specimen is suggested to be 6,254MPa (907ksi) and the equivalent Poisson’s ratio as 0.64. Specifically the CS5 type specimen which has a ratio of one-fourth (= width/length) was revealed as an appropriate shape of specimen to show those elastic behavior.

Author(s):  
Min-Ki Cho ◽  
Chang-Hoon Ha ◽  
Moo-Yong Kim ◽  
Sang-Cheol Lee ◽  
Jea-Mean Koo ◽  
...  

A tube support plate is one of the significant parts of a steam generator, which confines the rotational and translational motion of tubes caused by the hydraulic and seismic load. It also provides a flow path along the tubes. There are various types of tube support plates according to the component designer’s preference. In this investigation, ten types of trefoil Broached Tube Support Plate (BTSP) specimens made from ASME stainless steel were analyzed and tested to determine the appropriate shape of trefoil BTSP in the view of the elastic properties including elastic modulus and Poisson’s ratio. The types of trefoil BTSP specimens were designated as SI through S5 and L1 through L5 for S and L types, respectively. These specimens are categorized by the shape and dimension of broached hole. Ten specimens were investigated through finite element analysis, and compression and bending tests. The dimensions of the test specimens were decided through a previous research study done to examine appropriate shape for the compression and bending tests. The equivalent elastic properties of BTSP were obtained by the finite element analysis as per different loading orientation as well as the various specimen types. Autodesk® Inventor™ software was used to make the analytical model and ABAQUS® software was used for the analysis and post-processing. The equivalent elastic properties of BTSP specimens were also acquired by the compression and bending tests. From the results of the finite element analysis, and the compression and bending tests, the appropriate shapes of trefoil BTSP with regard to the equivalent elastic modulus, and Poisson’s ratio are suggested as L4, S3, and S4.


Author(s):  
Alysson Aldrin Barreto Bezerra ◽  
Luanda Maria Sousa da Silva ◽  
Antônio Wagner de Lima

Among the many areas of Civil Engineering, there is one known as Structures. In view of the growing sophistication of the constructions, and consequently an increase in the complexity of the calculations involved, auxiliary computational software has been revolutionizing this area. Already present in the professional work of the engineer, this technological support has a direct effect on the teaching and learning process, since many computer programs, some of them difficult to understand by students, are study tools of the disciplines of the Structures area. Among the contents in which the students present more difficulty, there is Finite Element Analysis, a discipline offered on graduation and that had its practical development linked to the advent of computation. By being the method most used as a computational tool in the field of engineering these days, this knowledge is indispensable to the students of this course. The objective of this work is to construct a computational code in order to facilitate the study of linear-elastic behavior of Euler-Bernoulli beams with punctual loads using the Finite Element Analysis. For this, a numerical example was analyzed, with the aid of a program implemented with the Python® language, to reinforce the effectiveness of the program and, consequently, to promote the improvement of student learning.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2013 ◽  
Vol 83 (7) ◽  
pp. 1087-1096 ◽  
Author(s):  
A. Ranjbaran ◽  
H. Rousta ◽  
M. O. Ranjbaran ◽  
M. A. Ranjbaran ◽  
M. Hashemi ◽  
...  

2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


Sign in / Sign up

Export Citation Format

Share Document