Nonlinear Analysis for a Two-Phase Natural Circulation Loop Under Low-Pressure

Author(s):  
Arrdaneh Kazem ◽  
Zaferanlouei Salman ◽  
Mohsen Farahi ◽  
Asad Allah Ahmadi

The purpose of this paper is to develop a nonlinear model to investigate the instabilities of a two-phase natural circulation loop under low-pressure condition. Inlet velocity oscillations and the corresponding trajectories are respectively presented in the time evolution planes and phase planes. We obtain a stability map to explore the instability regions of this natural circulation loop. The results show that the considered loop has two unstable regions, instability type-I in the low power region and instability type-II in the high power region. Then the parametric study is carried out to understand the relation between the parameters of system and two types of instability. The parametric study reveals that lengthening the riser has an unstable effect on system stability. Thus, lengthening the riser causes a reduction in the stability region in the both low power and high power levels. Also it can be observed that by increasing the form loss coefficient at the inlet of heated section or in the downcomer section, the stability region expands, however by increasing the form loss coefficient at the outlet of heated section or in the upper horizontal section, the stability region decreases consequently.

Author(s):  
Arrdaneh Kazem ◽  
Ahmadi Asad allah ◽  
Mohsen Farahi ◽  
Zaferanlouei Salman

The purpose of this paper is to develop a nonlinear model to investigate the instabilities of a two-phase natural circulation loop. We obtain a stability map to explore the unstable regions of this natural circulation loop. The results show that the considered loop has two unstable regions, instability type-I in the low power region and instability type-II in the high power region. Then the parametric study is carried out to understand the relation between the parameters of system and two types of instability. The parametric study reveals that lengthening the riser has an unstable effect on system stability. Thus, lengthening the riser causes a reduction in the stability region in the both low power and high power levels. Also it can be observed that by increasing the form loss coefficient at the inlet of heated section or in the downcomer section, the stability region expands, however by increasing the form loss coefficient at the outlet of heated section or in the upper horizontal section, the stability region decreases consequently.


Author(s):  
ZhongChun Li ◽  
JiYang Yu ◽  
XiaoMing Song

As a part of “supercritical water reactor basic research”, the stability of the natural circulation research plays an important role on the feasibility of supercritical water reactor and experiment research. In this paper, the stability of a supercritical water natural circulation loop built by Department of Engineering Physics, Tsinghua University was studied by numerical method. It was confirmed that the static or Ledinegg instability doesn’t occur in HACA system, and there are no instabilities existing when the inlet enthalpy is larger than critical enthalpy. Instability was observed by numerical way, which is similar to DWOs and PDOs in two phase natural circulation loop. The system parameters’ influence on the instability of supercritical natural circulation loop was studied.


2019 ◽  
Author(s):  
Adarsh R. Nair ◽  
Rupesh Shanmughom ◽  
Raveesh Gopalakrishnan ◽  
Abhijith A. S. Nair

Sign in / Sign up

Export Citation Format

Share Document