Code Simulation of Quenching of a High Temperature Debris Bed: Model Improvement and Validation With Experimental Results

Author(s):  
A. Bachrata ◽  
F. Fichot ◽  
G. Repetto ◽  
M. Quintard ◽  
J. Fleurot

The loss of coolant accidents with core degradation e.g. TMI-2 and Fukushima demonstrated that the nuclear safety analysis has to cover accident sequences involving a late reflood activation in order to develop appropriate and reliable mitigation strategies for both, existing and advanced reactors. The reflood (injection of water) is possible if one or several water sources become available during the accident. In a late phase of accident, no well-defined coolant paths would exist and a large part of the core would resemble to a debris bed e.g. particles with characteristic length-scale: 1 to 5 mm, as observed in TMI-2. The French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) is developing experimental programs (PEARL and PRELUDE) and simulation tools (ICARE-CATHARE and ASTEC) to study and optimize the severe accident management strategy and to assess the probabilities to stop the progress of in-vessel core degradation at a late stage of an accident. The purpose of this paper is to propose a consistent thermo-hydraulic model of reflood of severely damaged reactor core for ICARE-CATHARE code. The comparison of the calculations with PRELUDE experimental results is presented. It is shown that the quench front exhibits either a 1D behavior or a 2D one, depending on injection rate or bed characteristics. The PRELUDE data cover a rather large range of variation of parameters for which the developed model appears to be quite predictive.

Author(s):  
D. Dupleac

The paper overviews the analytical studies performed at Politehnica University of Bucharest on the analysis of late phase severe accident phenomena in a Canada Deuterium Uranium (CANDU) plant. The calculations start from a dry debris bed at the bottom of calandria vessel. Both SCDAPSIM/RELAP code and ansys-fluent computational fluid dynamics (CFD) code are used. Parametric studies are performed in order to quantify the effect of several identified sources of uncertainty on calandria vessel failure: metallic fraction of zirconium inside the debris, containment pressure, timing of water depletion inside calandria vessel, steam circulation in calandria vessel above debris bed, debris temperature at moment of water depletion inside calandria vessel, calandria vault nodalization, and the gap heat transfer coefficient.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Taeseok Kim ◽  
Wonjun Choi ◽  
Joongoo Jeon ◽  
Nam Kyung Kim ◽  
Hoichul Jung ◽  
...  

During a hypothesized severe accident, a containment building is designed to act as a final barrier to prevent release of fission products to the environment in nuclear power plants. However, in a bypass scenario of steam generator tube rupture (SGTR), radioactive nuclides can be released to environment even if the containment is not ruptured. Thus, thorough mitigation strategies are needed to prevent such unfiltered release of the radioactive nuclides during SGTR accidents. To mitigate the consequence of the SGTR accident, this study was conducted to devise a conceptual approach of installing In-Containment Relief Valve (ICRV) from steam generator (SG) to the free space in the containment building and it was simulated by MELCOR code for numerical analysis. Simulation results show that the radioactive nuclides were not released to the environment in the ICRV case. However, the containment pressure increased more than the base case, which is a disadvantage of the ICRV. To minimize the negative effects of the ICRV, the ICRV linked to Reactor Drain Tank (RDT) and cavity flooding was performed. Because the overpressurization of containment is due to heat of ex-vessel corium, only cavity flooding was effective for depressurization. The conceptual design of the ICRV is effective in mitigating the SGTR accident.


Author(s):  
Jun Ishikawa ◽  
Tomoyuki Sugiyama ◽  
Yu Maruyama

The Japan Atomic Energy Agency (JAEA) is pursuing the development and application of the methodologies on fission product (FP) chemistry for source term analysis by using the integrated severe accident analysis code THALES2. In the present study, models for the eutectic interaction of boron carbide (B4C) with steel and the B4C oxidation were incorporated into THALES2 code and applied to the source term analyses for a boiling water reactor (BWR) with Mark-I containment vessel (CV). Two severe accident sequences with drywell (D/W) failure by overpressure initiated by loss of core coolant injection (TQUV sequence) and long-term station blackout (TB sequence) were selected as representative sequences. The analyses indicated that a much larger amount of species from the B4C oxidation was produced in TB sequence than TQUV sequence. More than a half of carbon dioxide (CO2) produced by the B4C oxidation was predicted to dissolve into the water pool of the suppression chamber (S/C), which could largely influence pH of the water pool and consequent formation and release of volatile iodine species.


2019 ◽  
Vol 34 (3) ◽  
pp. 291-298
Author(s):  
Kyung Jang ◽  
Tae Woo

The humanoid is investigated for the mechanical and physical aspect in the nuclear disaster, especially for a severe accident, which includes the core melting. There are some mechanical studies of the leg and hand of the humanoid in which the human mimicking features are described. The management of the task is accomplished by the three regional preparations. The robot is made of the radiation-resistance substance. Therefore, it could work on the normal task of a human for the removal of the broken debris in a collapsed building. However, there is a limitation for the use in the reactor core building due to very high temperature of the nuclear fuel. The regional classification of the site is studied for the practical purposes. The post-accident analysis is accompanied with multidisciplinary research for the humanoid development in the nuclear industry.


Author(s):  
Katarzyna Skolik ◽  
Anuj Trivedi ◽  
Marina Perez-Ferragut ◽  
Chris Allison

The NuScale Small Modular Reactor (SMR) is an integrated Pressurized Water Reactor (iPWR) with the coolant flow based on the natural circulation. The reactor core consists of 37 fuel assemblies similar to those used in typical PWRs, but only half of their length to generate 160MW thermal power (50 MWe). Current study involves the development of a NuScale-SMR model based on its Design Certification Application (DCA) data (from NRC) using RELAP/SCDAPSIM. The turbine trip transient (TTT) was simulated and analysed. The objective was to assess this version of the code for natural circulation system modeling capabilities and also to verify the input model against the publicly available TTT results obtained using NRELAP5. This successful benchmark confirms the reliability of the thermal hydraulic model and allows authors to use it for further safety and severe accident analyses. The reactor core channels, pressurizer, riser and downcomer pipes as well as the secondary steam generator tubes and the containment were modeled with RELAP5 components. SCDAP core and control components were used for the fuel elements in the core. The final input deck achieved the steady state with the operating conditions comparable to those reported in the DCA. RELAP/SCDAPSIM predictions are found to be satisfactory and comparable to the reference study. It confirms the code code capabilities for natural circulation system transients.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3577
Author(s):  
Fatma Balany ◽  
Anne WM Ng ◽  
Nitin Muttil ◽  
Shobha Muthukumaran ◽  
Man Sing Wong

Research on urban heat mitigation has been growing in recent years with many of the studies focusing on green infrastructure (GI) as a strategy to mitigate the adverse effects of an urban heat island (UHI). This paper aims at presenting a review of the range of findings from GI research for urban heat mitigation through a review of scientific articles published during the years 2009–2020. This research includes a review of the different types of GI and its contribution for urban heat mitigation and human thermal comfort. In addition to analysing different mitigation strategies, numerical simulation tools that are commonly used are also reviewed. It is seen that ENVI-met is one of the modelling tools that is considered as a reliable to simulate different mitigation strategies and hence has been widely used in the recent past. Considering its popularity in urban microclimate studies, this article also provides a review of ENVI-met simulation results that were reported in the reviewed papers. It was observed that the majority of the research was conducted on a limited spatial scale and focused on temperature and human thermal comfort.


Sign in / Sign up

Export Citation Format

Share Document