Safety Assurance for Boiling Water Reactors (BWRs) Beyond Design Basis

Author(s):  
Salomon Levy

Safety assurance of nuclear power plants cannot be achieved with highly inaccurate design bases coupled with extended operation beyond them as was the case at Fukushima Daiichi Units 1, 2, and 3. They resulted in core melts and radioactivity releases to the environment at the highest level 7 on the International Nuclear Event Scale (INES). The inexplicable low tsunami design basis used at Fukushima has been blamed for most of the extensive flooding and damages at the plants which led to a station blackout (SBO). But “the regulatory guidelines which stated that SBOs need not be considered played a large and negative role in the three core melts that transpired” (1). There were many other relevant Japan regulatory inadequacies which contributed to the severity of the events and they are covered in Section I titled Incorrect Design Basis and Inadequate Regulations. They are preceded by a short Introduction listing previous evaluations of the Fukushima Daiichi accident and providing a summary description of its immediate consequences. Section II covers Fukushima Daiichi Inadequate Operations during Beyond Design Basis Events, including failure to properly operate the isolation condenser (IC) and to recognize the limitations of the reactor core isolation cooling (RCIC). The IC and RCIC were installed to provide short term cooling during BWR SBO followed by injection of firewater to take the reactors to cold shutdown. The three Fukushima core melts could have been avoided by increasing focus upon depressurizing the reactors and using the installed fire water systems which were lined up to operate within one to three hours after the earthquake. They would have been able to add any kind of available water to the three depressurized reactors and take them to and keep them at cold shutdown conditions. Instead, Unit 1decided to shutdown IC for unexplained reasons while Units 2 and 3 chose to delay water addition to their depressurized reactors while RCIC was presumed to be working. Japan operators, management, and regulators may not have taken enough into account that, due to the tsunami failure of the plant ultimate heat sink, after IC stops working and RCIC is no longer certain to be available, the result is that: (1) the containment water is the only heat sink left to absorb the reactor decay heat transported there by the RCIC and reactor relief valves; (2) only a limited number of hours is available to inject any kind of other available water into the depressurized reactors; (3) high containment pressure is to be avoided as well as the ensuing difficulties to vent it; and (4) incorrect reactor water level data should not be relied upon to discourage proper actions as happened at all three Fukushima Daiichi Units. This broad statement is justified in much more details in Section II. Section III takes advantage of all the lessons learned at Fukushima to achieve Safety Assurance Beyond Design Basis. It includes all the necessary elements to avoid and limit future core melts. Most important of all is to have nuclear power plant personnel and management “exhibit very strong safety culture (and safety assurance beyond design basis), believe in them and to live them” as they prevail in US according to M.J. Virgilio, Deputy Executive Director of US NRC (2).

Author(s):  
James Nygaard ◽  
Ping Wan ◽  
Desmond Chan ◽  
Sara Barrientos

As an aftermath of the natural disasters affecting the Fukushima Daiichi nuclear power plants in Japan, there has been great attention to provide assurance of safety of nuclear power plants around the world. Accordingly, many countries are requiring “stress tests” for their plants to assess the ability to withstand disaster scenarios for which they were not originally designed. Additional efforts are underway to capture lessons learned related to the operation of critical or major systems. Each operator and each country’s regulatory authority may be at different levels of completion for these activities. However, effects on non-safety related or peripheral systems have not been specifically addressed as standalone items or in an integrated systems approach. This paper seeks to produce an initial assessment of vulnerable systems, structures or components of non-safety related areas that may become critical to the safe operation of a nuclear plant or to the first steps to maintain stability of the plant during a postulated beyond design basis event. The same assessment is valid for events of significant magnitude, or for events affecting the entire site or region, even if a plant’s design basis is not exceeded. The initial assessment is based on widespread events, such as at the Fukushima Daiichi station, with focus on large nuclear power reactors. Certain peripheral plant systems support plant operators and staff or emergency responders such as by affording communication or physical access to plant areas. Other peripheral systems support plant operation or recovery, for example provision of diverse power supply or cooling means. Passive components common to multiple systems such as cables and piping are also assessed. Once vulnerable systems, structures or components are identified, various modifications or mitigation approaches will be discussed.


Author(s):  
Katsumi Yamada ◽  
Abdallah Amri ◽  
Lyndon Bevington ◽  
Pal Vincze

The Great East Japan Earthquake and the subsequent tsunami on 11 March 2011 initiated accident conditions at several nuclear power plants (NPPs) on the north-east coast of Japan and developed into a severe accident at the Fukushima Daiichi NPP, which highlighted a number of nuclear safety issues. After the Fukushima Daiichi accident, new research and development (R&D) activities have been undertaken by many countries and international organizations relating to severe accidents at NPPs. The IAEA held, in cooperation with the OECD/NEA, the International Experts’ Meeting (IEM) on “Strengthening Research and Development Effectiveness in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant” at IAEA Headquarters in Vienna, Austria, 16–20 February 2015. The objective of the IEM was to facilitate the exchange of information on these R&D activities and to further strengthen international collaboration among Member States and international organizations. One of the main conclusions of the IEM was that the Fukushima Daiichi accident had not identified completely new phenomena to be addressed, but that the existing strategies and priorities for R&D should be reconsidered. Significant R&D activities had been already performed regarding severe accidents of water cooled reactors (WCRs) before the accident, and the information was very useful for predicting and understanding the accident progression. However, the Fukushima Daiichi accident highlighted several challenges that should be addressed by reconsidering R&D strategies and priorities. Following this IEM, the IAEA invited several consultants to IAEA Headquarters, Vienna, Austria, 12–14 May 2015, and held a meeting in order to discuss proposals on possible IAEA activities to facilitate international R&D collaboration in relation to severe accidents and how to effectively disseminate the information obtained at the IEM. The IAEA also held Technical Meeting (TM) on “Post-Fukushima Research and Development Strategies and Priorities” at IAEA Headquarters, Vienna, Austria, 15–18 December 2015. The objective of this meeting was to provide a platform for experts from Member States and international organizations to exchange perspectives and information on strategies and priorities for R&D regarding the Fukushima Daiichi accident and severe accidents in general. The experts discussed R&D topic areas that need further attention and the benefits of possible international cooperation. This paper discusses lessons learned from the Fukushima Daiichi accident based on the presentations and discussions at the meetings mentioned above, and identifies the needs for further R&D activities to develop WCR technologies to cope with Fukushima Daiichi-type accidents.


Author(s):  
G. Saji

Although the basic safety concerning control of reactivity, residual heat removal and confinement, was assured in the Kashiwazaki–Kariwa Nuclear Power Plants at the time of the Chuˆetsu-Oki Earthquake (2007), the accident caused great public concern as to the seismic safety of NPPs. The earthquake resulted in severe economic impacts, far exceeding the actually negligible environmental effect. The public is calling for a reassessment of the seismic safety of NPPs, as they are unable to understand the basic safety approaches of the Japanese seismic design practice. The earthquake significantly exceeded the design basis ground motion in all units. Due to this the seismic consequences, especially those malfunctions and damages in the lower seismic class items, are not surprising. The following three topics are highlighted from the lessons learned and the author’s reappraisal of the current seismic safety approach, namely: (1) Prevention of seismic consequences of the lower seismic class items, (2) Measures to ensure the seismic safety by including defense-in-depth, and (3) Reduction of seismic safety risks as low as reasonably achievable referring to ‘safety goals for seismic events.’ The author believes that ‘reduction of seismic risks as low as practical (S-ALAP)’ should be a new guiding principle for lower safety class items, in line with the new concept (gensai) developed in light of the Great Hanshin-Awaji Earthquake (1995), acknowledging difficulties of coping with earthquakes just by conservative design. For a reasonable reduction of seismic risks, it is necessary to answer to question of ‘how safe is safe enough.’ The author developed a safety goal for seismic consequences by integrating the International Nuclear Event Scale (INES) and Farmer’s probabilistic siting criteria. It is an extension of the author’s quantitative safety goals for non-seismic events already published in a series of previous papers (including RESS Vol. 80-2, pp. 143–161, 163–172; PSA’05-139985, 139989, 139990: ICONE14-89351).


2021 ◽  
Author(s):  
Masato Murohara ◽  
Akira Yamazaki ◽  
Takuya Sato ◽  
Naoto Kasahara

Abstract As the lessons learned from the Fukushima Daiichi Nuclear Power Plant accident, the importance of controlling the behavior after a failure and mitigating consequences of a failure was recognized. Conventional reactor structural design has been aimed at preventing the occurrence of failure due to Design Basis Events (DBE). This study aims to improve the resilience of the reactor structure under Beyond Design Basis Events (BDBE), such as very high temperatures and excessive earthquakes during severe accidents, by mitigating the consequences after failure.


Author(s):  
Vincent Coulon ◽  
Sébastien Christophe ◽  
Laurence Grammosenis ◽  
Luc Guinard ◽  
Hervé Cordier

Abstract The field of protection against external natural hazards (eg.: rare and severe hazards) has regularly evolved since the design of the first NPPs (Nuclear Power Plants) to take into account the experience feedback. Following the Fukushima Daiichi accident in March 2011, consideration of rare and severe natural hazards has considerably increased in the international context. Taking rare and severe natural hazards into account is a challenge for operating nuclear reactors and a major issue for the design of new nuclear reactors. In Europe, considering lessons learnt from the Fukushima Daiichi accident, European safety authorities released new reference levels in the framework of WENRA 2013 (Western European Nuclear Regulators Association) standards for new reactors [1] to address external hazards more severe than the design basis hazards. Considering this input, the French and UK nuclear regulators have released specific guidelines (Guide No. 22 related to design of new pressurized water reactors [2] for France and ONR Safety Assessment Principles SAPs [3] for the UK) to describe how to apply those principles in their national context. To comply with those different guidelines, EDF has developed different approaches, called Beyond Design Basis (BDB) approaches, related to rare and severe natural hazards issue in the French and UK context for nuclear new build projects. Those two approaches are presented in the present technical paper with the following structure: - safety objectives; - hazards to consider; - SSCs (Structures, Systems, and Components) required to meet safety objectives; - study rules and assumptions; - analysis of deterministic or probabilistic nature, thereby including the following: ○ analysis of available margins (margin between 10−4 per annum exceedance frequency of hazard site level or equivalent level of safety and the chosen Design Basis Hazard level also called ‘inherent margin’); ○ Fukushima Daiichi accident Operating Experience feedback; ○ probabilistic safety analyses. This technical paper highlights common characteristics and differences between the two approaches considering the French and UK regulatory contexts.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 414
Author(s):  
Atsuo Murata ◽  
Waldemar Karwowski

This study explores the root causes of the Fukushima Daiichi disaster and discusses how the complexity and tight coupling in large-scale systems should be reduced under emergencies such as station blackout (SBO) to prevent future disasters. First, on the basis of a summary of the published literature on the Fukushima Daiichi disaster, we found that the direct causes (i.e., malfunctions and problems) included overlooking the loss of coolant and the nuclear reactor’s failure to cool down. Second, we verified that two characteristics proposed in “normal accident” theory—high complexity and tight coupling—underlay each of the direct causes. These two characteristics were found to have made emergency management more challenging. We discuss how such disasters in large-scale systems with high complexity and tight coupling could be prevented through an organizational and managerial approach that can remove asymmetry of authority and information and foster a climate of openly discussing critical safety issues in nuclear power plants.


Sign in / Sign up

Export Citation Format

Share Document