Break Size Effects on CET Response in an Upper Head SBLOCA Transient

Author(s):  
S. Gallardo ◽  
A. Querol ◽  
G. Verdú

In the transients produced during Small Break Loss-Of-Coolant Accidents (SBLOCA), the maximum Peak Cladding Temperature (PCT) in the core could suffer rapid excursions which might strongly affect the core integrity. Most Pressurized Water Reactors (PWR) have Core Exit Thermocouples (CETs) to detect core overheating by considering that superheated steam flows in the upward direction when core uncovery occurs during SBLOCAs. Operators may start Accident Management (AM) actions to mitigate such accident conditions when the CET temperature exceeds a certain value. However, in a Vessel Upper Head SBLOCA, a significant delay in time and temperature rise of CETs from core heat-up can be produced. This work is developed in the frame of OECD/NEA ROSA Project Test 6-1 (SB-PV-9 in JAEA) handled in the Large Scale Test Facility (LSTF) of the Japan Atomic Energy Agency (JAEA). Test 6-1 simulated a PWR pressure vessel Upper-Head SBLOCA with a break size equivalent to 1.9% of the cold leg break under the assumption of total failure of High Pressure Injection System (HPIS). The paper shows several analyses about the geometry variables (size, location, flow paths and Upper Head nodalization) which can influence on the pressure vessel Upper Head SBLOCA model performed using the thermal-hydraulic code TRACE5.

Author(s):  
Mitsuhiro Suzuki ◽  
Takeshi Takeda ◽  
Hideo Nakamura

Presented are experiment results of the Large Scale Test Facility (LSTF) conducted at the Japan Atomic Energy Agency (JAEA) with a focus on core exit thermocouple (CET) performance to detect core overheat during a vessel top break loss-of-coolant accident (LOCA) simulation experiment. The CET temperatures are used to start accident management (AM) action to quickly depressurize steam generator (SG) secondary sides in case of core temperature excursion. Test 6-1 is the first test of the OECD/NEA ROSA Project started in 2005, simulating withdraw of a control rod drive mechanism penetration nozzle at the vessel top head. The break size is equivalent to 1.9% cold leg break. The AM action was initiated when CET temperature rose up to 623K. There was no reflux water fallback onto the CETs during the core heat-up period. The core overheat, however, was detected with a time delay of about 230s. In addition, a large temperature discrepancy was observed between the CETs and the hottest core region. This paper clarifies the reasons of time delay and temperature discrepancy between the CETs and heated core during boil-off including three-dimensional steam flows in the core and core exit. The paper discusses applicability of the LSTF CET performance to pressurized water reactor (PWR) conditions and a possibility of alternative indicators for earlier AM action than in Test 6-1 is studied by using symptom-based plant parameters such as a reactor vessel water level detection.


Author(s):  
Takeshi Takeda ◽  
Iwao Ohtsu

An experiment focusing on nitrogen gas behavior during reflux cooling in a pressurized water reactor (PWR) was performed with the rig of safety assessment/large scale test facility (ROSA/LSTF) at Japan Atomic Energy Agency. The test conditions were made such as the constant core power of 0.7% of the volumetric-scaled PWR nominal power and the primary pressure of lower than 1 MPa, unlike a previous related test with the LSTF. The steam generator (SG) secondary-side collapsed liquid level was maintained at a certain liquid level above the SG tube height. Nitrogen gas was injected stepwise into each SG inlet plenum at a certain constant amount. The primary pressure and the SG U-tube fluid temperatures were greatly dependent on the amount of nitrogen gas accumulated in the SG U-tubes. Nitrogen gas accumulated from the outlet towards the inlet of the SG U-tubes. Non-uniform flow behavior was observed among the SG U-tubes with nitrogen gas ingress. The RELAP5/MOD3.3 code indicated remaining problems in the predictions of the primary pressure and the SG U-tube fluid temperatures after nitrogen gas inflow.


Author(s):  
Thomas Ho¨hne ◽  
So¨ren Kliem ◽  
Ulrich Rohde ◽  
Frank-Peter Weiß

Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loop 1:5 scaled ROCOM mixing test facility. Thermal hydraulics analyses showed, that weakly borated condensate can accumulate in particular in the pump loop seal of those loops, which do not receive safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shifted towards the reactor pressure vessel (RPV). In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show a stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities.


Author(s):  
Matthew Walter ◽  
Shengjun Yin ◽  
Gary L. Stevens ◽  
Daniel Sommerville ◽  
Nathan Palm ◽  
...  

In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: • To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). • To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. • To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, “Fracture Toughness Requirements,” and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP) Conferences. This work is also relevant to the ongoing efforts of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, Section XI, Working Group on Operating Plant Criteria (WGOPC) efforts to incorporate nozzle fracture mechanics solutions into a revision to ASME B&PV Code, Section XI, Nonmandatory Appendix G.


Author(s):  
Andrea Querol ◽  
Sergio Gallardo ◽  
Gumersindo Verdú

Several experimental facilities, such as the Large Scale Test Facility (LSTF) of the Japan Atomic Energy Agency (JAEA), have been built to reproduce some accidental scenarios because full-scale testing is usually impossible to perform. One of the objectives of these Integral Test Facilities (ITFs) is to obtain measured data to be compared to simulations in order to test the capability of the thermalhydraulic codes to reproduce experimental conditions. The applicability of these experimental results to a full-size power plant system depends on the scaling criteria adopted. The present paper is focused on the simulation and the scaling of the Test 1-2 in the frame of the OECD/NEA ROSA Project to a Nuclear Power Plant (NPP). This test simulates a hot leg 1% Small Break Loss-Of-Coolant Accident (SBLOCA) in a Pressurized Water Reactor (PWR) under the actuation of High Pressure Injection (HPI) system and Accumulator Injection System (AIS). A scaled-up NPP TRACE5 input has been developed from a LSTF TRACE5 model validated by authors in previous works. The scaled-up model has been developed conserving the power-to-volume scaling ratios of LSTF components, initial and boundary conditions. Lengths and diameters of hot legs have been scaled from LSTF model trying to conserve Froude number. A comparison between both TRACE5 models (LSTF and scaled-up NPP) is performed (system pressures, discharged inventory and collapsed liquid levels). Special TRACE5 models such as Choked flow model and OFFTAKE model have been tested. A 3D VESSEL component has been tested in comparison to 1D TEE component to simulate the hot leg where the SBLOCA is located and varying the break orientation (downwards and upwards). Finally, a sensitivity analysis has been made to determine the effect of the break size in the SBLOCA range.


2019 ◽  
Vol 137 ◽  
pp. 01016 ◽  
Author(s):  
Rafał Bryk ◽  
Lars Dennhardt ◽  
Simon Schollenberger

PKL is the only test facility in Europe that replicates the entire primary side and the most important parts of the secondary side of western-type Pressurized Water Reactors (PWR) in the scale of 1:1 in heights. It is also worldwide the only test facility with 4 identical reactor coolant loops arranged symmetrically around the Reactor Pressure Vessel (RPV) for simulation of nonsymmetrical boundary conditions between the reactor loops. Thermal-hydraulic phenomena observed in PWRs are simulated in the PKL test facility for over 40 years. The analyses carried out in these years encompass a large spectrum of accident scenario simulations and corresponding cool-down procedures. The overall goal of the PKL experiments is to show that under accident conditions - even for extreme and highly unlikely assumptions as additional loss of safety systems - the core cooling can be maintained or re-established by automatic or operator- performed procedures and that a severe accident e.g. a core melt-down can be avoided under all circumstances. Another goal of the tests performed in the PKL facility is the provision of data for validation of thermal-hydraulic system codes. This paper presents recent modifications of the PKL facility, applied in order to adapt the facility to the latest western-type designs currently built in the world. The paper discusses also important results obtained in the last years.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Klaus Umminger ◽  
Lars Dennhardt ◽  
Simon Schollenberger ◽  
Bernhard Schoen

Investigations of the thermal-hydraulic behavior of pressurized water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany for many years. The PKL facility models the entire primary side and significant parts of the secondary side of a pressurized water reactor (PWR) at a height scale of 1 : 1. Volumes, power ratings and mass flows are scaled with a ratio of 1 : 145. The experimental facility consists of 4 primary loops with circulation pumps and steam generators (SGs) arranged symmetrically around the reactor pressure vessel (RPV). The investigations carried out encompass a very broad spectrum from accident scenario simulations with large, medium, and small breaks, over the investigation of shutdown procedures after a wide variety of accidents, to the systematic investigation of complex thermal-hydraulic phenomena. This paper presents a survey of test objectives and programs carried out to date. It also describes the test facility in its present state. Some important results obtained over the years with focus on investigations carried out since the beginning of the international cooperation are exemplarily discussed.


Author(s):  
R. Pochard ◽  
F. Jedrzejewski ◽  
S. Nilsuwankosit

In the general context of the nuclear activities, life extension of the existing plants is the interesting option for countries that are already well equipped with NPPs. As the working life of 60 years is now expected possible for some well maintained plants, their safety measures needs to be improved such that they should be comparable to the new or future designs, taken into account the results from the probabilistic and the deterministic accident analysis. To accomplish this aim, the Accident Management (AM) is the important part of the process that must be utilized including possible automation of some processes. At INSTN, the extensive sensitivity studies related to the feed and bleed process on the primary and the secondary side had been carried out with the SIPACT simulator, based on the Cathare code, for a 900 MWe pressurized water reactor. The simulations had been mainly conducted for the Beyond Design Basis Accident (BDBA) condition. This condition included the total loss of feed-water and a small break with the loss of the high pressure injection system (HPIS). From these studies, several interesting findings had been obtained. For AM purpose and with the bleeding process, the criterion called “the safety time margin” for core uncovery was introduced. By plotting the safety time margin against the bleeding time, the relation between them was established and used to optimize, when possible, the AM measures. For the scenario that involved the total loss of feed water, in case of full bleeding, a window was found for the bleeding time around the degradation of the heat exchange in SGs would be resulted. In this scenario, one of the solutions was to open only one relief valve at first in order to let through only the minimal mass. At the time of the injection by the accumulator, the other two relief valves were then opened. As a result, the flow through the relief valves could be effectively compensated by the flow from the accumulator, the mass balance in the vessel was maintained and the safety margin time was increased. For the scenario that was related to a small break without HPIS, the concept of the safety time margin was still applicable. The time window was observed to be narrower for the bleeding on the secondary side if the core uncovery was to be avoided, however. By observing the distribution of the mass in the primary loop, its behavior, which was directly related to the design, was fully demonstrated. One important finding showed that the current PWR design presented some disadvantage under the BDBA condition. Due to the way the water was accumulated in various components, sometime as much as that that was still remained in the pressure vessel, not all the water already presented or injected into the primary loop could reach the pressure vessel to be effectively utilized for core cooling. In order to characterize the availability of the water to cool the core, which related to the NPP BDBA robustness, a simple mass distribution criterion was proposed. Some improvements for the future design were also suggested.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
J. Freixa ◽  
A. Manera

Experimental results obtained at integral test facilities (ITFs) are used in the validation process of system codes for the transient analyses of light water reactors (LWRs). The expertise and guidelines derived from this work are later applied to transient analyses of nuclear power plants (NPPs). However, the boundary conditions at the NPPs will always differ from those at the ITF, and hence, the soundness of the ITF model needs to be maximized. An unaltered ITF nodalization should prove to be able to simulate as many tests as possible, before any conclusion is derived to NPP analyses. The STARS group at the Paul Scherrer Institut (PSI) actively participates in several international programs, where ITFs are being used (e.g., ROSA, PKL). Several tests carried out at the ROSA large-scale test facility operated by the Japan Atomic Energy Agency (JAEA) have been simulated in recent years by using the United States Nuclear Regulatory Commission (US-NRC) system code TRACE. In this paper, 5 different posttest analyses are presented, along with the evolution of the employed TRACE nodalization and the process followed to track the consistency of the nodalization modifications. The ROSA TRACE nodalization provided results in a reasonable agreement with all 5 experiments.


2021 ◽  
Vol 13 (10) ◽  
pp. 5498
Author(s):  
Alvaro Rodríguez-Prieto ◽  
Mariaenrica Frigione ◽  
John Kickhofel ◽  
Ana M. Camacho

The growth of green energy technologies within the frame of the 7th Sustainable Development Goal (SDG) along with the concern about climatic changes make nuclear energy an attractive choice for many countries to ensure energy security and sustainable development as well as to actively address environmental issues. Unlike nuclear equipment (immovable goods), which are often well-catalogued and analyzed, the design and manufacturing codes and their standardized materials specifications can be considered movable and intangible goods that have not been thoroughly studied based on a detailed evaluation of the scientific and technical literature on the reactor pressure vessel (RPV) materials behavior. The aim of this work is the analysis of historical advances in materials properties research and associated standardized design codes requirements. The analysis, based on the consolidated U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide (RG) 1.99 Rev.2 model, enables determination of the best materials options, corresponding to some of the most widely used material specifications such as WWER 15Kh2MFAA (used from the 1970s and 1980s; already in operation), ASME SA-533 Grade B Cl.1 (used in pressurized water reactor-PWR 2nd–4th; already in operation), DIN 20MnMoNi55 and DIN 22NiMoCr37 (used in PWR 2nd–4th) as well as ASTM A-336 Grade F22V (current designs). Consequently, in view of the results obtained, it can be concluded that the best options correspond to recently developed or well-established specifications used in the design of pressurized water reactors. These assessments endorse the fact that nuclear technology is continually improving, with safety being its fundamental pillar. In the future, further research related to the technical heritage from the evolution of materials requirements for other clean and sustainable power generation technologies will be performed.


Sign in / Sign up

Export Citation Format

Share Document