Power Rising and Descending Transient for the OTSG of a Small PWR

Author(s):  
Baihui Jiang ◽  
Zhiwei Zhou ◽  
Zhaoyang Xia ◽  
Qian Sun

Abstract As key heat transfer system in small and medium size pressurized water reactors, once-through steam generators are important parts of energy exchange between primary and secondary circuits, and are very important for the design and operation of reactors. However, two-phase flow and heat transfer in once-through steam generators are very complicated. When a reactor experience power rising and descending transient, the heat removal of once-through steam generator, the flow rate, the inlet fluid temperature and outlet steam temperature will all change accordingly. Especially when a reactor is running at a low power, the flow rate of the secondary side of OTSG is extremely small and the single-phase region of the secondary side of OTSGs is also too small. The two-phase flow instability may occur, which has a serious impact on reactor operation and safety. So, a reasonable power-up and power-down transient scheme is required to ensure operational stability when starting up and shutting down a reactor. RELAP5/MOD4.0 is a commercial software developed by Innovative System Software, LCC for transient analysis of light water reactors (LWR). After years of development and improvement, RELAP5 has been a basic tool for analysis and calculation of various simulators of nuclear power plants. Scholars all over the world have carried out a large number of analysis of two-phase flow stability using RELAP5, and the results are reliable. This paper takes once through steam generators with given structural parameters as the research object, and uses RELAP5 as the calculation tool. The influencing factors of flow instability are discussed in this paper, and the operating parameters of the fluid on the primary and secondary sides are designed to satisfy the flow stability under different powers. And a set of power-up and power-down schemes for stable operation is proposed.

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Ronghua Chen ◽  
Minghao Zhang ◽  
Kailun Guo ◽  
Dawei Zhao ◽  
Wenxi Tian ◽  
...  

Two-phase flow instability may occur in nuclear reactor systems, which is often accompanied by periodic fluctuation in fluid flow rate. In this study, bubble rising and coalescence characteristics under inlet flow pulsation condition are analyzed based on the MPS-MAFL method. To begin with, the single bubble rising behavior under flow pulsation condition was simulated. The simulation results show that the bubble shape and rising velocity fluctuate periodically as same as the inlet flow rate. Additionally, the bubble pairs’ coalescence behavior under flow pulsation condition was simulated and compared with static condition results. It is found that the coalescence time of bubble pairs slightly increased under the pulsation condition, and then the bubbles will continue to pulsate with almost the same period as the inlet flow rate after coalescence. In view of these facts, this study could offer theory support and method basis to a better understanding of the two-phase flow configuration under flow pulsation condition.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Leyuan Yu ◽  
Aritra Sur ◽  
Dong Liu

Single-phase convective heat transfer of nanofluids has been studied extensively, and different degrees of enhancement were observed over the base fluids, whereas there is still debate on the improvement in overall thermal performance when both heat transfer and hydrodynamic characteristics are considered. Meanwhile, very few studies have been devoted to investigating two-phase heat transfer of nanofluids, and it remains inconclusive whether the same pessimistic outlook should be expected. In this work, an experimental study of forced convective flow boiling and two-phase flow was conducted for Al2O3–water nanofluids through a minichannel. General flow boiling heat transfer characteristics were measured, and the effects of nanofluids on the onset of nucleate boiling (ONB) were studied. Two-phase flow instabilities were also explored with an emphasis on the transition boundaries of onset of flow instabilities (OFI). It was found that the presence of nanoparticles delays ONB and suppresses OFI, and the extent is correlated to the nanoparticle volume concentration. These effects were attributed to the changes in available nucleation sites and surface wettability as well as thinning of thermal boundary layers in nanofluid flow. Additionally, it was observed that the pressure-drop type flow instability prevails in two-phase flow of nanofluids, but with reduced amplitude in pressure, temperature, and mass flux oscillations.


Author(s):  
Leyuan Yu ◽  
Dong Liu

Recent studies of single-phase convective heat transfer of nanofluids reveal that, unlike the promising hypohesis in the early works, there is no significant improvement in the overall thermal performance of nanofluids over that of the base fluids when both heat transfer and hydrodynamic characteristics are considered. Meanwhile, very few studies have been devoted to investigating two-phase heat transfer of nanofluids, and it remains inconclusive whether the same pessimistic outlook should be expected. In this work, an experimental study of forced convective flow boiling and two-phase flow was conducted for Al2O3-water nanofluids through a minichannel. General flow boiling heat transfer characteristics were measured, and the effects of nanofluids on the onset of nucleate boiling (ONB) were studied. Two-phase flow instabilities were also explored with an emphasis on the transition boundaries of onset of flow instabilities (OFI). It was found that the presence of nanoparticles delays ONB and suppresses OFI, and the extent is correlated to the nanoparticle volume concentration. These effects were attributed to the change of surface wettability and the thinning of thermal boundary layer in the nanofluid flow. Additionally, it was observed that the pressure-drop type flow instability prevails in nanofluid two-phase flow, however, the oscillation amplitudes of the pressure, temperature and mass flux measurements are reduced.


1984 ◽  
Vol 21 (7) ◽  
pp. 491-500 ◽  
Author(s):  
Kenji FUKUDA ◽  
Akihiko KATO ◽  
Shu HASEGAWA

Author(s):  
Zheng Huang

Natural circulation is one of the most important mechanisms of passive safety systems in the advanced NPP design. By using RELAP5, steady-state behaviors of a typical natural circulation loop (NCL) were investigated. The Influences of various system parameters, such as pressure, cooling heat transfer area and loop height were studied. The results show that the heat transfer power of the NCL (i.e. the heat transferred from the heater to the tank by NCL) is linear with respect to the temperatures of boundary heat source and sink, excluding the phase transition region. The NCL operation mode (i.e. two-phase flow or one-phase flow) is mainly determined by the loop pressure. It is found that with the decrease of the pressure, the two-phase flow operation range is widened. The heat transfer power of two-phase flow case is always higher, and varies more substantially with pressure, than that of one-phase flow case under the same boundary temperatures. However, flow instability may occur for two-phase flow case. By increasing the area of heat transfer surface between loop cooling section and tank, the temperature difference between the inlet and the outlet of loop heating section as well as the heat transfer power of the NCL will increase. But the influence is insignificant when the tank temperature is relatively high. It is also observed that for both one-phase flow and two-phase flow, the change of loop height has little effect upon the heat transfer power of the NCL under the given boundary condition in this study.


Author(s):  
Su-Xia Hou ◽  
Yun Tai ◽  
Fu-Yu Zhao

Two-phase flow instability is an important problem that affects the running of steam generators in nuclear reactor systems. In this paper, two-phase flow instability in parallel channels of a steam generator are analyzed to disclose the mechanism of flow instability by using the frequency domain method. The mathematical expressions of heat transfer and flow for a steam generator are proposed, and the transfer function of the closed-loop system is deduced by using linearization and Laplace transfer. The steam generator’s stability is judged according to Nyquist stability criterion. Depending on this fundamental principal, the computer code is developed to analyze the stability of steam generators. The results displayed two conclusions; firstly, the increase of inlet orifices or mass flow rate enhances the stability of generator steam; secondly, the coupling interactions between channels and their external loop effects on the stability of generator steam are not ignored. The result show that the effects are non-monotonic on the stability of generator steam.


Author(s):  
Tenglong Cong ◽  
Wenxi Tian ◽  
Guanghui Su ◽  
Suizheng Qiu

Steam generator (SG), as the primary-to-secondary heat exchanger and pressure boundary of primary loop, should be integrated and performs well in heat transfer ability. Flow characteristics of the secondary side fluid of SG are essential to analyze U-tube wastage caused by the flow-induced vibration and thermal stress. In this paper, secondary side two-phase flow was simulated based on the porous media model. Additional momentum and energy source terms were appended to the momentum and energy equations of porous media region, respectively. The additional momentum source contained the resistances of downcomer, tube bundle, support plate and separator. The additional energy source included the heat transfer from primary side to secondary side fluid. Solving the control equations by ANSYS FLUENT solver yielded the distributions of velocity, temperature, pressure, density and quality, which can be used in the analysis of flow-induced vibration and separator.


Sign in / Sign up

Export Citation Format

Share Document