Stress Analysis of the Pressurized-Water Reactor Control Rod Under Operating Conditions

Author(s):  
Leo A. Carrilho

Abstract This work aims to develop a finite element model of a PWR control rod at operating conditions for stress analysis of the rod cladding. The finite element model simulates a control rod exposed to high operating temperatures and pressure while portions of the rod are irradiated, resulting in accumulated fluence of neutrons by the rod materials. These high temperature and accumulated fluence induce thermal expansion and swelling of the rod materials, especially of the absorber, which may eventually interact with the rod cladding, generating stresses and strains in the wall of the cladding tube. Moreover, if the maximum stress or strain in the tube wall exceeds the design allowable limit, the absorber rod is considered failed. The author creates the control rod finite element model and apply the operating loads on two-dimensional axisymmetric elements to obtain displacements, temperatures, stresses, and strains. The model also includes contact surface elements to evaluate eventual mechanical interactions between absorber and cladding due to thermal expansion and swelling effects. This is a coupled nonlinear static analysis solution that includes thermal expansion effects to calculate temperature distribution and subsequent thermal strains in the absorber rod due to the heat generation rates and coolant temperature; swelling analysis to calculate absorber growth induced by irradiation; and creep analysis to calculate absorber stress relaxation under coolant pressure and temperature. The finite element model is capable of determining whether or not absorber-to-cladding gap closure will occur and if so, calculate maximum stress and strain in the rod cladding associated with mechanical interaction between the two components induced by the operating temperature and thermal fluence loads.

2014 ◽  
Vol 1078 ◽  
pp. 266-270
Author(s):  
Yu Feng Shu ◽  
Yong Feng Zheng

This paper establishes the finite element model of reachstacker spreader, makes static strength calculation under eight typical operating conditions with rated load, based on the calculation results, it points out the weaknesses of spreader and gives some corresponding improvement measures for the drawbacks. Further analysis shows that the maximum stress of improved spreader mechanism has reduced 10.1%, which demonstrates the effectiveness of improvements.


2014 ◽  
Vol 945-949 ◽  
pp. 1143-1149
Author(s):  
Hai Xia Sun ◽  
Hua Kai Wei ◽  
Xiao Fang Zhao ◽  
Jia Rui Qi

The finite element model of the concrete mixing truck’s frame is builded by using shell as basic element, and the process of building the finite element model of the balance suspension is introduced in detail. Based on this, frame’s stress on five types of typical operating conditions are calculated by using the finite element analysis software, NASTRAN, and results can show the dangerous position and the maximum stress position on the frame. The analysis result on structural strength can provide the basis for further improving the frame structure.


2000 ◽  
Author(s):  
A. D. Yoder ◽  
R. N. Smith

Abstract The importance of predicting and reducing thermal expansion errors in workpieces is becoming greater as better precision machining processes are developed. An artificial neural network model to estimate the workpiece thermal expansion errors in real-time during precision machining operations is developed and compared with experimental results. A finite element model of workpiece thermal expansion has been created to predict expansions in a thin cylinder undergoing a turning process. The neural network has been trained using finite element model solutions over a range of conditions to allow for changing machining parameters. To realize “on-line” capability, the measurable values of heat flux into the workpiece, surface heat transfer coefficient, and tool location are used as inputs and the expansion as the output for the neural network. The estimations of the network are compared with experimental results from a turning process on a large diameter aluminum cylinder. There is reasonable agreement between measured and estimated expansions with an average error of 18%. The neural network has not been trained at the cutting conditions used during the experiment. The speed of the neural network estimation is much greater than the solution to the finite element model. The finite element model required over 15 minutes to solve on a Pentium 133Mhz computer. The neural network calculated the expansions easily at 1 Hz during the experiment on the same computer. With real-time estimation using measurable data, compensation can be made in the tool path to correct for these errors. The application of this method to precision machining processes has the capability of greatly reducing the error caused by workpiece thermal expansions.


2010 ◽  
Vol 156-157 ◽  
pp. 1360-1365
Author(s):  
Qiu Lin Pu ◽  
Xiao Diao Huang ◽  
Wen Zheng Ding

In this paper,the ball screw feeding system’s dynamic characteristics of a numerical remanufacture grinding machine is analyzed using the FEM. Discusses the modeling method of ball screw system into the finite element model and established the combination of finite element model. Through the modal analysis and the harmonious response analysis, the nature frequency and vibration mode of the feeding system and typical operating conditions of excitation in the harmonic responsehave have been gotten,thus the dependable basis for the construction’s optimization and dynamic function’s increasing of the feeding system is provided, ensure the numerical remanufacture will be success.


2020 ◽  
pp. 1-3
Author(s):  
Sachin S Bhagat ◽  
A.G Indalkar ◽  
Avinash Phirke

Polypropylene Co-polymer (PPCP) Prosthetic Foot Model, Indigenously designed at All India Institute of Physical Medicine and Rehabilitation (AIIPMR), Mumbai. More commonly, this design is known as Modified Flex foot. Various researcher’s contributed towards its design modification, material optimization, patient trial & clinical implications and further improvements. As such, this study was conducted to observe & understand the stress analysis of this modified flexfoot under loading conditions at various orientation of gait. Finite element analysis (FEA) method was used with Ansys 12.0 software. Study objectives was to construct and analyze the finite element model, to find out & understand failure prone areas in the present design of PPCP prosthetic foot. This study was conducted into five phases. At initial phase, actual foot design was constructed and input parameters like geometrical parameters were calculated considering the standard length transtibial amputee. Similarly Material properties, loading conditions & boundary conditions were determined. AutCAD model was constructed using input parametrs & imported into Ansys 12.0 software. Finite element model were constructed and analyzed. Results were noted, which were displyed in the form of several contour plots & through colours that correspond to different stress values. FEA results obtained for various stress values like, Elemental stress, shearing stress & Von Mises stresses (Combination stresses). Peak Von Mises stress value of 28112 Mpa, observed at lower ankle fillet region during heel strike orientation of the gait. Study concluded that lower ankle fillet region & Midfoot spring region will be subjected to maximum stress during heel strike, Mid stance & push off. It was concluded that lower ankle fillet region & Midfoot spring region will be subjected to maximum stress during heel strike, Mid stance & push off.


2019 ◽  
Vol 36 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Chun-Lin Lu ◽  
Meng-Kao Yeh

Purpose Analysis of the thermal effects during the packaging process or in the actual operating environment is necessary to develop small monolithic integrated sensing chips with heterogeneous integration. The use of multiple layers and various materials in monolithic integrated sensing chips addresses the coefficient of thermal expansion (CTE) mismatch issue. The purpose of this study is to focus on the residual stress analysis of the shielding electrode, which is a metal film that prevents pull-in of proof-mass during anodic bonding in microelectromechanical system (MEMS) chips with pressure sensors embedded in an accelerometer. Design/methodology/approach The finite element model of the chip was built by the commercial software ANSYS, and the residual stress was evaluated during the die attachment process for the shielding electrode. Various shielding electrode materials and a proposed design with a keep-out zone to reduce the residual stress are discussed, with a focus on the relationship between the geometric parameters of the chip and the residual stress for copper shielding electrodes of different thicknesses. Findings The results of the finite element analysis showed that the use of polysilicon as a shielding electrode in the proposed design generated the lowest residual stress because of its low CTE. The maximum stresses in both of in-plane and out-of-plane directions in the finite element model were reduced by keep-out zone design for the proposed design of the copper shielding electrode, and had 11 times reduction in out-of-plane direction especially, according to the nonlinear analysis as the stress concentration point in the shielding electrode moved. Moreover, the design with a thinner shielding electrode, thinner glass substrate and higher CTE of the glass substrate also lowered the maximum von Mises stress. On the other hand, the stress level during the operating temperature, without considering residual stress, overestimated up to five times in the proposed design. Originality/value In this study, valuable suggestions are proposed for the design of chips with pressure sensors embedded in accelerometers.


Infotekmesin ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 93-97
Author(s):  
Sigit Setijo Budi ◽  
Agus Suprihadi ◽  
Syarifudin Syarifudin

The torsion beam is one of the most important parts of an electric car. The torsion beam can accept the loading of vehicle structures statically and dynamically. The movement of the vehicle, such as turning, turning with a bumpy road contour, affects the stress limit that the torsion beam can support. This study aims to simulate the effects of shifts such as deflection and stress on the use of a torsion beam suspension. The method used is a loading simulation using the Finite Element Model (FEM) model. The results showed that the maximum deflection effect occurred in the 2000N loading of 1.5347 mm, while the maximum stress effect occurred in the 2000N loading of 2342.57N.


2011 ◽  
Vol 413 ◽  
pp. 520-523
Author(s):  
Cai Xia Luo

The Stress Distribution in the Connection of the Spherical Shell and the Opening Nozzle Is Very Complex. Sharp-Angled Transition and Round Transition Are Used Respectively in the Connection in the Light of the Spherical Shell with the Small Opening and the Large One. the Influence of the Two Connecting Forms on Stress Distribution Is Analyzed by Establishing Finite Element Model and Solving it. the Result Shows there Is Obvious Stress Concentration in the Connection. Round Transition Can Reduce the Maximum Stress in Comparison with Sharp-Angled Transition in both Cases of the Small Opening and the Large Opening, Mainly Reducing the Bending Stress and the Peak Stress, but Not the Membrane Stress. the Effect of Round Transition on Reducing Stress Was Not Significant. so Sharp-Angled Transition Should Be Adopted in the Connection when a Finite Element Model Is Built for Simplification in the Future.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


Sign in / Sign up

Export Citation Format

Share Document