scholarly journals Analisis Tegangan City Electric Car Torsi Beam Suspension Menggunakan Metode Finite Element Model (FEM)

Infotekmesin ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 93-97
Author(s):  
Sigit Setijo Budi ◽  
Agus Suprihadi ◽  
Syarifudin Syarifudin

The torsion beam is one of the most important parts of an electric car. The torsion beam can accept the loading of vehicle structures statically and dynamically. The movement of the vehicle, such as turning, turning with a bumpy road contour, affects the stress limit that the torsion beam can support. This study aims to simulate the effects of shifts such as deflection and stress on the use of a torsion beam suspension. The method used is a loading simulation using the Finite Element Model (FEM) model. The results showed that the maximum deflection effect occurred in the 2000N loading of 1.5347 mm, while the maximum stress effect occurred in the 2000N loading of 2342.57N.

2014 ◽  
Vol 1078 ◽  
pp. 266-270
Author(s):  
Yu Feng Shu ◽  
Yong Feng Zheng

This paper establishes the finite element model of reachstacker spreader, makes static strength calculation under eight typical operating conditions with rated load, based on the calculation results, it points out the weaknesses of spreader and gives some corresponding improvement measures for the drawbacks. Further analysis shows that the maximum stress of improved spreader mechanism has reduced 10.1%, which demonstrates the effectiveness of improvements.


Author(s):  
Leo A. Carrilho

Abstract This work aims to develop a finite element model of a PWR control rod at operating conditions for stress analysis of the rod cladding. The finite element model simulates a control rod exposed to high operating temperatures and pressure while portions of the rod are irradiated, resulting in accumulated fluence of neutrons by the rod materials. These high temperature and accumulated fluence induce thermal expansion and swelling of the rod materials, especially of the absorber, which may eventually interact with the rod cladding, generating stresses and strains in the wall of the cladding tube. Moreover, if the maximum stress or strain in the tube wall exceeds the design allowable limit, the absorber rod is considered failed. The author creates the control rod finite element model and apply the operating loads on two-dimensional axisymmetric elements to obtain displacements, temperatures, stresses, and strains. The model also includes contact surface elements to evaluate eventual mechanical interactions between absorber and cladding due to thermal expansion and swelling effects. This is a coupled nonlinear static analysis solution that includes thermal expansion effects to calculate temperature distribution and subsequent thermal strains in the absorber rod due to the heat generation rates and coolant temperature; swelling analysis to calculate absorber growth induced by irradiation; and creep analysis to calculate absorber stress relaxation under coolant pressure and temperature. The finite element model is capable of determining whether or not absorber-to-cladding gap closure will occur and if so, calculate maximum stress and strain in the rod cladding associated with mechanical interaction between the two components induced by the operating temperature and thermal fluence loads.


2011 ◽  
Vol 413 ◽  
pp. 520-523
Author(s):  
Cai Xia Luo

The Stress Distribution in the Connection of the Spherical Shell and the Opening Nozzle Is Very Complex. Sharp-Angled Transition and Round Transition Are Used Respectively in the Connection in the Light of the Spherical Shell with the Small Opening and the Large One. the Influence of the Two Connecting Forms on Stress Distribution Is Analyzed by Establishing Finite Element Model and Solving it. the Result Shows there Is Obvious Stress Concentration in the Connection. Round Transition Can Reduce the Maximum Stress in Comparison with Sharp-Angled Transition in both Cases of the Small Opening and the Large Opening, Mainly Reducing the Bending Stress and the Peak Stress, but Not the Membrane Stress. the Effect of Round Transition on Reducing Stress Was Not Significant. so Sharp-Angled Transition Should Be Adopted in the Connection when a Finite Element Model Is Built for Simplification in the Future.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


2001 ◽  
Author(s):  
Y. W. Kwon ◽  
J. A. Lobuono

Abstract The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax’s biodynamical response from a projectile impact. The finite element model of the human thorax consists of the thoracic skeleton, heart, lungs, major arteries, major veins, trachea, and bronchi. The finite element model of the human thorax is validated by comparing the model’s results to experimental data obtained from cadavers wearing a protective body armor system undergoing a projectile impact.


Author(s):  
V. Ramamurti ◽  
D. A. Subramani ◽  
K. Sridhara

Abstract Stress analysis and determination of eigen pairs of a typical turbocharger compressor impeller have been carried out using the concept of cyclic symmetry. A simplified model treating the blade and the hub as isolated elements has also been attempted. The limitations of the simplified model have been brought out. The results of the finite element model using the cyclic symmetric approach have been discussed.


2013 ◽  
Vol 671-674 ◽  
pp. 1012-1015
Author(s):  
Zhao Ning Zhang ◽  
Ke Xing Li

Due to the environment, climate, loads and other factors, the pre-stress applied to the beam is not a constant. It is important for engineers to track the state of the pre-stress in order to ensure security of the bridge in service. To solve the problem mentioned above, the paper puts forward a new way to analyze the effective pre-stress using the displacement inversion method based on the inversion theory according to the measured vertical deflection of the bridge in service at different time. The method is a feasible way to predict the effective pre-stress of the bridge in service. Lastly, taking the pre-stressed concrete continuous rigid frame bridge for example, the effective pre-stress is analyzed by establishing the finite element model.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3258 ◽  
Author(s):  
Valery Gupalov ◽  
Alexander Kukaev ◽  
Sergey Shevchenko ◽  
Egor Shalymov ◽  
Vladimir Venediktov

The paper considers the construction of a piezoelectric accelerometer capable of measuring constant linear acceleration. A number of designs are proposed that make it possible to achieve high sensitivity with small dimensions and a wide frequency band (from 10−5 Hz). The finite element model of the proposed design was investigated, and its output characteristic and scale factor (36 mV/g) were obtained.


2019 ◽  
Vol 71 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Shixian Xu ◽  
Zhengtao Su ◽  
Jian Wu

Purpose This paper aims to research the influence of pressure, friction factors, roughness and actuating speed to the mixed lubrication models of outstroke and instroke. Design/methodology/approach Mixed lubrication model is solved by finite volume method, which consists of coupled fluid mechanics, deformation mechanics and contact mechanics analyses. The influence of friction factor on the finite element model is also considered. Then, contact pressure, film thickness, friction and leakage have been studied. Findings It was found that the amount of leakage is sensitive to the film thickness. The larger the film thickness is, the greater the influence received from the friction factor, however, the effect of oil film on the friction is negligible. The friction is determined mainly by the contact pressure. The trend of friction and leakage influenced by actuating velocity and roughness is also obtained. Originality/value The influence of friction factor on the finite element model is considered. This can make the calculation more accurate.


Sign in / Sign up

Export Citation Format

Share Document