Stress Analysis of the Lumbar Spine Using the Finite Element Model

Author(s):  
Yoshishige Arai ◽  
Hideaki E. Takahashi ◽  
Hiroyuki Suzuki

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 125046-125055
Author(s):  
Rui-Chun Dong ◽  
Qian-Jian Guo ◽  
Wei Yuan ◽  
Wei Du ◽  
Xian-Hai Yang ◽  
...  


2019 ◽  
Vol 36 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Chun-Lin Lu ◽  
Meng-Kao Yeh

Purpose Analysis of the thermal effects during the packaging process or in the actual operating environment is necessary to develop small monolithic integrated sensing chips with heterogeneous integration. The use of multiple layers and various materials in monolithic integrated sensing chips addresses the coefficient of thermal expansion (CTE) mismatch issue. The purpose of this study is to focus on the residual stress analysis of the shielding electrode, which is a metal film that prevents pull-in of proof-mass during anodic bonding in microelectromechanical system (MEMS) chips with pressure sensors embedded in an accelerometer. Design/methodology/approach The finite element model of the chip was built by the commercial software ANSYS, and the residual stress was evaluated during the die attachment process for the shielding electrode. Various shielding electrode materials and a proposed design with a keep-out zone to reduce the residual stress are discussed, with a focus on the relationship between the geometric parameters of the chip and the residual stress for copper shielding electrodes of different thicknesses. Findings The results of the finite element analysis showed that the use of polysilicon as a shielding electrode in the proposed design generated the lowest residual stress because of its low CTE. The maximum stresses in both of in-plane and out-of-plane directions in the finite element model were reduced by keep-out zone design for the proposed design of the copper shielding electrode, and had 11 times reduction in out-of-plane direction especially, according to the nonlinear analysis as the stress concentration point in the shielding electrode moved. Moreover, the design with a thinner shielding electrode, thinner glass substrate and higher CTE of the glass substrate also lowered the maximum von Mises stress. On the other hand, the stress level during the operating temperature, without considering residual stress, overestimated up to five times in the proposed design. Originality/value In this study, valuable suggestions are proposed for the design of chips with pressure sensors embedded in accelerometers.



2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Matthew J. Mills ◽  
Nesrin Sarigul-Klijn

Mathematical models of the human spine can be used to investigate spinal biomechanics without the difficulties, limitations, and ethical concerns associated with physical experimentation. Validation of such models is necessary to ensure that the modeled system behavior accurately represents the physics of the actual system. The goal of this work was to validate a medical image-based nonlinear lumbosacral spine finite element model of a healthy 20-yr-old female subject under physiological moments. Range of motion (ROM), facet joint forces (FJF), and intradiscal pressure (IDP) were compared with experimental values and validated finite element models from the literature. The finite element model presented in this work was in good agreement with published experimental studies and finite element models under pure moments. For applied moments of 7.5 N·m, the ROM in flexion–extension, axial rotation, and lateral bending were 39 deg, 16 deg, and 28 deg, respectively. Excellent agreement was observed between the finite element model and experimental data for IDP under pure compressive loading. The predicted FJFs were lower than those of the experimental results and validated finite element models for extension and torsion, likely due to the nondegenerate properties chosen for the intervertebral disks and morphology of the young female spine. This work is the first to validate a computational lumbar spine model of a young female subject. This model will serve as a valuable tool for predicting orthopedic spinal injuries, studying the effect of intervertebral disk replacements using advanced biomaterials, and investigating soft tissue degeneration.



Author(s):  
Leo A. Carrilho

Abstract This work aims to develop a finite element model of a PWR control rod at operating conditions for stress analysis of the rod cladding. The finite element model simulates a control rod exposed to high operating temperatures and pressure while portions of the rod are irradiated, resulting in accumulated fluence of neutrons by the rod materials. These high temperature and accumulated fluence induce thermal expansion and swelling of the rod materials, especially of the absorber, which may eventually interact with the rod cladding, generating stresses and strains in the wall of the cladding tube. Moreover, if the maximum stress or strain in the tube wall exceeds the design allowable limit, the absorber rod is considered failed. The author creates the control rod finite element model and apply the operating loads on two-dimensional axisymmetric elements to obtain displacements, temperatures, stresses, and strains. The model also includes contact surface elements to evaluate eventual mechanical interactions between absorber and cladding due to thermal expansion and swelling effects. This is a coupled nonlinear static analysis solution that includes thermal expansion effects to calculate temperature distribution and subsequent thermal strains in the absorber rod due to the heat generation rates and coolant temperature; swelling analysis to calculate absorber growth induced by irradiation; and creep analysis to calculate absorber stress relaxation under coolant pressure and temperature. The finite element model is capable of determining whether or not absorber-to-cladding gap closure will occur and if so, calculate maximum stress and strain in the rod cladding associated with mechanical interaction between the two components induced by the operating temperature and thermal fluence loads.





2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.



2001 ◽  
Author(s):  
Y. W. Kwon ◽  
J. A. Lobuono

Abstract The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax’s biodynamical response from a projectile impact. The finite element model of the human thorax consists of the thoracic skeleton, heart, lungs, major arteries, major veins, trachea, and bronchi. The finite element model of the human thorax is validated by comparing the model’s results to experimental data obtained from cadavers wearing a protective body armor system undergoing a projectile impact.



Author(s):  
V. Ramamurti ◽  
D. A. Subramani ◽  
K. Sridhara

Abstract Stress analysis and determination of eigen pairs of a typical turbocharger compressor impeller have been carried out using the concept of cyclic symmetry. A simplified model treating the blade and the hub as isolated elements has also been attempted. The limitations of the simplified model have been brought out. The results of the finite element model using the cyclic symmetric approach have been discussed.



2013 ◽  
Vol 671-674 ◽  
pp. 1012-1015
Author(s):  
Zhao Ning Zhang ◽  
Ke Xing Li

Due to the environment, climate, loads and other factors, the pre-stress applied to the beam is not a constant. It is important for engineers to track the state of the pre-stress in order to ensure security of the bridge in service. To solve the problem mentioned above, the paper puts forward a new way to analyze the effective pre-stress using the displacement inversion method based on the inversion theory according to the measured vertical deflection of the bridge in service at different time. The method is a feasible way to predict the effective pre-stress of the bridge in service. Lastly, taking the pre-stressed concrete continuous rigid frame bridge for example, the effective pre-stress is analyzed by establishing the finite element model.



Sign in / Sign up

Export Citation Format

Share Document