Development of Prediction Technology of Two-Phase Flow Dynamics Under Earthquake Acceleration: (13) Rising Bubble Motion Under Horizontal Vibration

Author(s):  
Rie Arai ◽  
Akiko Kaneko ◽  
Hideaki Monji ◽  
Yutaka Abe ◽  
Hiroyuki Yoshida ◽  
...  

An earthquake is one of the most serious phenomena for the safety of a nuclear reactor in Japan. Therefore, structural safety of nuclear reactors has been studied and nuclear reactors ware contracted with structural safety for a big earthquake. However, it is not enough for safety operation of nuclear reactors because thermal-fluid safety is not confirmed under the earthquake. For instance, behavior of gas-liquid two-phase flow is unknown under the earthquake conditions. Especially, fluctuation of void fraction is an important factor for the safety operation of the nuclear reactor. In the previous work, fluctuation of void faction in bubbly flow was studied experimentally and theoretically, to investigate the stability of the bubbly flow. In such studies, flow rate or void fraction fluctuations were given to the steady bubbly flow. In the case of the earthquake, the fluctuation is not only the flow rate, but also a body force on the two-phase flow and a shear force through a pipe wall. Interactions of gas and liquid through their interface also act on the behavior of the two-phase flow. The fluctuation of the void fraction is not clear for such complicated situation under the earthquake. Therefore, in this research project, the behavior of gas-liquid two-phase flow is investigated experimentally and numerically in the series of study. In this study, to investigate the effects of vibration on bubbly flow in the components and construct an experimental database for validation, we performed visualization experiments of vertical bubbly flow in a rectangular water tank on which a sine wave vibration was applied. In this paper, results of visualized experiment evaluated by the visualization techniques, including positions of bubbles, shapes of bubbles and liquid velocity distributions around bubbles, were shown. And liquid velocity distribution around bubbles by the PIV measurement was also shown. In the results, bubble behaviors were affected by oscillation. And the cycle of the bubble tilt angle was almost same as the cycle of oscillation table velocity.

Author(s):  
Hiroyuki Yoshida ◽  
Taku Nagatake ◽  
Kazuyuki Takase ◽  
Akiko Kaneko ◽  
Hideaki Monji ◽  
...  

Earthquake is one of the most serious phenomena for safety of a nuclear reactor in Japan. Therefore, structural safety of nuclear reactors has been studied and nuclear reactors were contracted with structural safety for a big earthquake. However, it is not enough for safety operation of nuclear reactors because thermal-fluid safety is not confirmed under the earthquake. For instance, behavior of gas-liquid two-phase flow is unknown under the earthquake conditions. Especially, fluctuation of void faction is an important factor for the safety operation of the nuclear reactor. In the previous work, fluctuation of void faction in bubbly flow was studied experimentally and theoretically to investigate the stability of the bubbly flow. In such studies, flow rate or void fraction fluctuations were given to the steady bubbly flow. In case of the earthquake, the fluctuation is not only the flow rate, but also body force on the two-phase flow and shear force through a pipe wall. Interactions of gas and liquid through their interface also act on the behavior of the two-phase flow. The fluctuation of the void fraction is not clear for such complicated situation under the earthquake. Therefore, the behavior of gas-liquid two-phase flow is investigated experimentally and numerically in a series of study. In this study, to develop the prediction technology of two-phase flow dynamics under earthquake acceleration, a detailed two-phase flow simulation code with an advanced interface tracking method TPFIT was expanded to two-phase flow simulation under earthquake conditions. In this paper, outline of expansion of the TPFIT to simulate detailed two-phase flow behavior under the earthquake condition was shown. And the bubbly flow in a horizontal pipe excited by oscillation acceleration and under the fluctuation of the liquid flow was simulated by using expanded TPFIT. Predicted deformation of bubbles near wall was compared with measured results under flow rate fluctuation and structural vibration.


Author(s):  
Hiroyuki Yoshida ◽  
Taku Nagatake ◽  
Kazuyuki Takase ◽  
Akiko Kaneko ◽  
Hideaki Monji ◽  
...  

An earthquake is one of the most serious phenomena for the safety of a nuclear reactor in Japan. Therefore, structural safety of nuclear reactors has been studied and nuclear reactors ware contracted with structural safety for a big earthquake. However, it is not enough for safety operation of nuclear reactors because thermal-fluid safety is not confirmed under the earthquake. For instance, behavior of gas-liquid two-phase flow is unknown under the earthquake conditions. Especially, fluctuation of void fraction is an important factor for the safety operation of the nuclear reactor. In the previous work, fluctuation of void faction in bubbly flow was studied experimentally and theoretically investigate the stability of the bubbly flow. In such studies, flow rate or void fraction fluctuations were given to the steady bubbly flow. In case of the earthquake, the fluctuation is not only the flow rate, but also a body force on the two-phase flow and shear force through the pipe wall. Interactions of gas and liquid through their interface also act on the behavior of the two-phase flow. The fluctuation of the void fraction is not clear for such complicated situation under the earthquake. Therefore, the behavior of gas-liquid two-phase flow is investigated experimentally and numerically in the series of study. In this study, to develop the predictive technology of two-phase flow dynamics under earthquake acceleration, a detailed two-phase flow simulation code with an advanced interface tracking method TPFIT was expanded to two-phase flow simulation under earthquake conditions. In this paper, the bubbly flow in a horizontal pipe excited by oscillation acceleration and under the fluctuation of the liquid flow was simulated by using the expanded TPFIT. Predicted time series of velocity profiles around the bubbles and shapes of bubbles were compared with measured results under flow rate fluctuation and structural vibration. Predicted results were almost same as measured results qualitatively. And it was concluded that the expanded TPFIT can be applied to qualitative analysis of bubbly flow under accelerating conditions.


Author(s):  
Rie Arai ◽  
Kousuke Mizuno ◽  
Akiko Kaneko ◽  
Hideaki Monji ◽  
Yutaka Abe ◽  
...  

Earthquake is one of the most serious phenomena for safety of a nuclear reactor in Japan. Therefore, structural safety of nuclear reactors has been studied and nuclear reactors ware contracted with structural safety for a big earthquake. However, it is not enough for safety operation of nuclear reactors because thermal-fluid safety is not confirmed under the earthquake. For instance, behavior of gas-liquid two-phase flow is unknown under the earthquake conditions. Especially, fluctuation of void faction is an important factor for the safety operation of the nuclear reactor. In the previous work, fluctuation of void faction in bubbly flow was studied experimentally and theoretically to investigate the stability of the bubbly flow. In such studies, flow rate or void fraction fluctuations were given to the steady bubbly flow. In case of the earthquake, the fluctuation is not only the flow rate, but also body forth on the two-phase flow and shear forth through the pipe wall. Interactions of gas and liquid through their interface also act on the behavior of the two-phase flow. The fluctuation of the void fraction is not clear for such complicated situation under the earthquake. Therefore, in this research projects, the behavior of gas-liquid two-phase flow is investigated experimentally and numerically in the series of study. In this study, to investigate effects of vibration on bubbly flow in the components and construct experimental database for validation, we performed visualization experiments of vertical bubbly flow in rectangular water tank on which sine wave vibration was applied. In this paper, results of preliminary visualization experiments were shown including data of positions of bubbles, shapes of bubbles and velocity of bubbles evaluated by the visualization techniques. And liquid velocity distribution around bubbles by the PIV measurement was also shown. In the results, bubble behaviors were affected by oscillation. And the cycle of the bubble inclination angle was almost same as the cycle of oscillation table velocity.


Author(s):  
Akifumi Miyazaki ◽  
Yuki Kato ◽  
Tetsuya Kanagawa ◽  
Akiko Kaneko ◽  
Hideaki Monji ◽  
...  

Earthquake is one of the most serious phenomena for safety of a nuclear reactor in Japan. Structural safety of nuclear reactors has been studied and nuclear reactors were contracted with structural safety for a big earthquake. However, it is not enough for safe operation of nuclear reactors because thermal-fluid safety is not confirmed under the earthquake. For instance, behavior of gas-liquid two-phase flow is unknown under the earthquake conditions. Especially, fluctuation of void fraction is an important factor for the safe operation of the nuclear reactor. In the previous work, fluctuation of void fraction in bubbly flow was studied experimentally and numerically. In case of the earthquake, the fluctuation is not only the flow rate, but also body force on the two-phase flow and shear stress through the pipe wall. Interactions of gas and liquid through their interface also act on the behavior of the two-phase flow. The fluctuation of the void fraction is not clear for such complicated situation under the earthquake. Our study has investigated the behavior of gas-liquid two-phase flow experimentally and numerically. In this paper effects of vibration on bubbly flow in the components and construct experimental database for validation and performs visualization experiments of a rising single bubble in a rectangular water tank on which sinusoidal vibration was applied. In this paper, results of visualized experiment evaluated by the visualization techniques, including positions of a bubble, a shape of the bubble and the bubble tilt angle were shown. In the results, bubble behavior were affected by the table oscillation. The bubble tilt angle is also almost same value of the bubble movement angle. It is implied that higher table oscillation frequency than 20 Hz quite weakly affects on fluctuation of bubble tilt angle frequency.


Author(s):  
Hiroyuki Yoshida ◽  
Taku Nagatake ◽  
Kazuyuki Takase ◽  
Akiko Kaneko ◽  
Hideaki Monji ◽  
...  

An earthquake is one of the most serious phenomena to consider for the safety of a nuclear reactor in Japan. Therefore, structural safety of nuclear reactors has been studied and nuclear reactors were contracting with structural safety for a big earthquake. However, it is not enough for safety operation of nuclear reactors because thermal-fluid safety is not confirmed under the earthquake. For instance, behavior of gas-liquid two-phase flow is unknown in seismic conditions. Especially, fluctuation of void fraction is an important factor for the safety operation of the nuclear reactor. In previous work, fluctuation of void faction in bubbly flow was studied experimentally and theoretically to investigate the stability of the bubbly flow. In such studies, flow rate or void fraction fluctuations were given to the steady bubbly flow. In case of the earthquake, the fluctuation is not only the flow rate, but also a body force on the two-phase flow and shear force through the pipe wall. Interactions of gas and liquid through their interface also act on the behavior of the two-phase flow. The fluctuation of the void fraction is not clear for such complicated situation during the earthquake. Therefore, the behavior of gas-liquid two-phase flow is investigated experimentally and numerically in a series of studies. In this study, to develop the predictive technology of two-phase flow dynamics under earthquake acceleration, a detailed two-phase flow simulation code with an advanced interface tracking method TPFIT (Two-Phase Flow simulation code with Interface Tracking) was expanded to two-phase flow simulation in seismic conditions. In a previous study, we performed a numerical simulation of a two-phase bubbly flow in a horizontal pipe and a vertical bubble motion in a water tank in seismic conditions. And it was confirmed that the modified TPFIT can be applicable to the bubbly flow in seismic conditions. In this paper, the two-phase bubbly flow in a simulated single-subchannel excited by oscillation acceleration was simulated by using the expanded TPFIT. A calculation domain used in this simulation was a simplified subchannel in a BWR core. And time-series of void fraction distributions were evaluated based on predicted bubble distributions. When no oscillation acceleration was added, void fraction concentrated in a region near the wall. When oscillation acceleration was added, void fraction distribution was changed by time. And coalesces of bubbles occurred in the numerical simulation, and bubbles with relatively large diameter were observed. In the results, complicated void fraction distribution was observed, because the response of void fraction distribution on the oscillation acceleration was dependent on not only imposed acceleration, but also the bubble diameter.


Author(s):  
Isao Kataoka ◽  
Kenji Yoshida ◽  
Tsutomu Ikeno ◽  
Tatsuya Sasakawa ◽  
Koichi Kondo

Accurate analyses of turbulence structure and void fraction distribution are quite important in designing and safety evaluation of various industrial equipments using gas-liquid two-phase flow such as nuclear reactor, etc. Using turbulence model of two-phase flow and models of bubble behaviors in bubble flow and slug flow, systematic analyses of distributions of void fraction, averaged velocity and turbulent velocity were carried out and compared with experimental data. In bubbly flow, diffusion of bubble and lift force are dominant in determining void fraction distribution. On the other hand, in slug flow, large scale turbulence eddies which convey bubbles into the center of flow passage are important in determining void fraction distribution. In turbulence model, one equation turbulence model is used with turbulence generation and turbulence dissipation due to bubbles. Mixing length due to bubble is also modeled. Using these bubble behavior models and turbulence models, systematic predictions were carried out for void distributions and turbulence distributions for wide range of flow conditions of two phase flow including bubbly and slug flow. The results of predictions were compared with experimental data in round straight tube with successful agreement. In particular, concave void distributions in bubbly flow and convex distribution in slug flow were well predicted based on the present model.


Author(s):  
Quanyao Ren ◽  
Liangming Pan ◽  
Wenxiong Zhou ◽  
Tingpu Ye ◽  
Hang Liu ◽  
...  

In order to simulate the transfer of mass, momentum and energy in the gas-liquid two-phase flow system, tremendous work focused on the phenomenon, mechanisms and models for two-phase flow in different channels, such as circular pipe, rectangular channel, rod bundle and annulus. Drift-flux model is one of the widely used models for its simplicity and good accuracy, especially for the reactor safety analysis codes (RELAP5 and TRAC et al.) and sub-channel analysis code (COBRA, SILFEED and NASCA et al.). Most of the adopted drift-flux models in these codes were developed based on the void fraction measured in pipe and annulus, which were different with the actual nuclear reactor. Although some drift-flux models were developed for rod bundles, they were based on the void fraction on the whole cross-section not in subchannel in rod bundles due to the lack of effective measuring methods. A novel sub-channel impedance void meter (SCIVM) has been developed to measure the void fraction in sub-channel of 5 × 5 rod bundles, which is adopted to evaluate these existing drift-flux models for rod bundles. By comparison, the values of drift-flux parameters have large differences among different correlations, which are suggested to be reconsidered. Based on the experimental data and physical laws, Lellouche-Zolotar and Chexal-Lellouche correlations show a better performance for drift velocity. If the predicting error of void fraction is the only concerned parameter, Chen-Liu, Ishizuka-Inoue and Chexal-Lellouche correlations are recommended for averaged relative error less than 30%. More experiments are suggested to focus on the distribution parameter and drift velocity through their definition.


Author(s):  
Olufemi E. Bamidele ◽  
Wael H. Ahmed ◽  
Marwan Hassan

Abstract The current work investigates two-phase flow induced vibrations in 90° U-bend. The two-phase induced vibration of the structure was investigated in the vertical, horizontal and axial directions for various flow patterns from bubbly flow to wavy and annular-dispersed flow. The void fractions at various locations along the piping including the fully developed void fraction and the void fraction at the entrance of the U-bend were fully investigated and correlated with the vibration amplitude. The results show that the excitation forces of the two-phase flow in a piping structure are highly dependent on the flow pattern and the flow conditions upstream of the bend. The fully developed void fraction and slip between phases are important in modelling of forces in U-bends and elbows.


Author(s):  
W. G. Sim ◽  
N. W. Mureithi ◽  
M. J. Pettigrew

To understand the fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. The distributions of flow parameters across a pipe, such as gas velocity, liquid velocity and void fraction, may be assumed to follow a power law (Cheng 1998, Serizawa et al. 1975). The void fraction profile is, for example, uniform for bubbly flow while it is more or less parabolic for slug flow. In the present work, the average values of momentum flux, slip ratio, etc. are derived by integral analysis, based on approximate power law distributions. A parametric study with various distributions was performed. The existing empirical formulations for average void fraction, proposed by Wallis (1969), Zuber et al. (1967) and Ishii (1970), are considered to obtain the present results. In particular, the unsteady momentum flux for slug flow is approximated.


Sign in / Sign up

Export Citation Format

Share Document