Framework for Assessing Transition Scenarios to Sustainable Nuclear Energy Systems

Author(s):  
Galina Fesenko ◽  
Vladimir Kuznetsov ◽  
Vladimir Usanov

The International Atomic Energy Agency’s (IAEA’s) International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was established in 2000 with the goal to ensure a sustainable nuclear energy supply to meet the global energy needs in the 21st century. The INPRO activities on global and regional nuclear energy scenarios provide newcomers and mature nuclear countries alike with better understanding of options for making a collaborative transition to future sustainable nuclear energy systems. Collaborative project GAINS (Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle) developed an internationally verified analytical framework for assessing such transition scenarios. The framework (hereafter, GAINS framework) is a part of the integrated services provided by IAEA to Member States considering initial development or expansion of their nuclear energy programmes. The paper presents major elements of the analytical framework and selected results of its application, including: • Long-term nuclear energy demand scenarios based on the IAEA Member States’ high and low estimations of nuclear power deployment until 2030 and expected trends until 2050 and on forecasts of competent international energy organizations; • Heterogeneous world model comprised of groups of non-personified non-geographical countries (NGs) with different policy regarding nuclear fuel cycle back end; • Architectures of nuclear energy systems; • Metrics and tools for the assessment of dynamic nuclear energy system evolution scenarios regarding sustainability, including a set of key indicators and evaluation parameters; • An internationally verified database with best estimate material flow and economic characteristics of existing and advanced nuclear reactors and associated nuclear fuel cycles needed for material flow analysis and comparative economic analysis, extending the previously developed IAEA databases and taking into account preferences of different countries; • Selected results of sample analysis for scenarios involving transition from the present fleets of nuclear reactors and fuel cycles to future sustainable nuclear energy system architectures involving innovative technological solutions.

2018 ◽  
Vol 4 (1) ◽  
pp. 27-33
Author(s):  
Vladimir I. Usanov ◽  
Stepan A. Kviatkovskii ◽  
Andrey A. Andrianov

The paper describes the approach to the assessment of nuclear energy systems based on the integral indicator characterizing the level of their sustainability and results of comparative assessment of several nuclear energy system options incorporating different combinations of nuclear reactors and nuclear fuel cycle facilities. The nuclear energy systems are characterized by achievement of certain key events pertaining to the following six subject areas: economic performance, safety, availability of resources, waste handling, non-proliferation and public support. Achievement of certain key events is examined within the time interval until 2100, while the key events per se are assessed according to their contribution in the achievement of sustainable development goals. It was demonstrated that nuclear energy systems based on the once-through nuclear fuel cycle with thermal reactors and uranium oxide fuel do not score high according to the integral sustainable development indicator even in the case when the issue of isolation of spent nuclear fuel in geological formation is resolved. Gradual replacement of part of thermal reactors with fast reactors and closing the nuclear fuel cycle results in the achievement of evaluated characteristics in many subject areas, which are close to maximum requirements of sustainable development, and in the significant enhancement of the sustainability indicator.


Author(s):  
M. Khoroshev ◽  
F. Depisch ◽  
S. Subbotin

The IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) can be considered as the IAEA’s response to the challenges of growing energy demand. INPRO’s activities are intended to help to achieve one of the main objectives of the IAEA — to promote the development and peaceful use of nuclear energy. INPRO applies a carefully developed Methodology to assess Innovative Nuclear Energy Systems (INS) and to define R&D needs and deployment strategies for the development of large-scale regional and global INS. The purpose is to match the opportunities and challenges of sustainable energy supply provided by nuclear energy (NE) to the global balance of demands and resources.


2012 ◽  
Vol 4 (10) ◽  
pp. 2377-2398 ◽  
Author(s):  
Stefano Passerini ◽  
Mujid Kazimi

The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC) is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis), the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU) generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.


Author(s):  
Aleksandra Schwenk-Ferrero ◽  
Andrey Andrianov

Is it true that the nuclear technology applied to electric energy generation offers a clean, safe, reliable and affordable i.e. sustainable alternative? Yes it is, but its impact on the environment strongly depends on the implementation bearing residual risks due to a human factor, technical failures or natural catastrophes. A full response is therefore difficult and can first be given when the wicked multi-disciplinary problems get well formulated and “solved”. These problems have multi-dimensional nature lying at the interface between: necessary R&D effort, the industrial deployment and the technology impact in view of the environmental sustainability including the management of produced hazardous waste. This enormous complexity indicates that just a description of the problem might represent a problem. The paper proposes a holistic approach to assess the nuclear energy systems potential with respect to sustainable performance applying Multi-criteria decision analysis with a suitable objective tree and a multi-level criteria structure and examines the trading-off techniques for ranking of the alternatives. The framework proposes a multi-criteria and multi-stakeholders treatment which can be used as a pre-decisional support towards an implementation of nuclear fuel cycles adapted to national preferences and priorities. Proposed approach addresses some aspects of the environmental footprint of nuclear energy systems. Advanced nuclear fuel cycles, previously investigated by the NEA/OECD expert group WASTEMAN, are analyzed as a case study. Sustainability facets of waste management, resource utilization and economics are in focus.


2019 ◽  
Vol 5 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Andrey A. Andrianov ◽  
Ilya S. Kuptsov ◽  
Tatyana A. Osipova ◽  
Olga N. Andrianova ◽  
Tatyana V. Utyanskaya

The article presents a description and some illustrative results of the application of two optimization models for a two-component nuclear energy system consisting of thermal and fast reactors in a closed nuclear fuel cycle. These models correspond to two possible options of developing Russian nuclear energy system, which are discussed in the expert community: (1) thermal and fast reactors utilizing uranium and mixed oxide fuel, (2) thermal reactors utilizing uranium oxide fuel and fast reactors utilizing mixed nitride uranium-plutonium fuel. The optimization models elaborated using the IAEA MESSAGE energy planning tool make it possible not only to optimize the nuclear energy system structure according to the economic criterion, taking into account resource and infrastructural constraints, but also to be used as a basis for developing multi-objective, stochastic and robust optimization models of a two-component nuclear energy system. These models were elaborated in full compliance with the recommendations of the IAEA’s PESS and INPRO sections, regarding the specification of nuclear energy systems in MESSAGE. The study is based on publications of experts from NRC “Kurchatov Institute”, JSC “SSC RF-IPPE”, ITCP “Proryv”, JSC “NIKIET”. The presented results demonstrate the characteristic structural features of a two-component nuclear energy system for conservative assumptions in order to illustrate the capabilities of the developed optimization models. Consideration is also given to the economic feasibility of a technologically diversified nuclear energy structure providing the possibility of forming on its base a robust system in the future. It has been demonstrated that given the current uncertainties in the costs of nuclear fuel cycle services and reactor technologies, it is impossible at the moment to make a reasonable conclusion regarding the greatest attractiveness of a particular option in terms of the economic performance.


Author(s):  
Nick Jenkins

Of all the sources of energy used for electricity generation, nuclear power is the most contentious with strong opinions both favouring and opposing its use. Some well-known environmentalists consider that the use of nuclear power is essential to limit climate change, while expressing reservations over its environmental impacts. ‘Nuclear power’ explains that there are two mechanisms by which nuclear energy could be used to create heat and so generate power; nuclear fission and fusion. Nuclear power reactors create heat, which is used to make steam that is then passed through a turbine to generate electricity. The nuclear fuel cycle is described along with the different generations of nuclear reactors.


Author(s):  
Juergen Kupitz

This paper presents the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). It defines its rationale, key objectives and specifies the organizational structure. The IAEA General Conference (2000) has invited “all interested Member States to combine their efforts under the aegis of the Agency in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation-resistant nuclear technology” (GC(44)/RES/21) and invited Member States to consider to contribute to a task force on innovative nuclear reactors and fuel cycle (GC(44)/RES/22). In response to this invitation, the IAEA initiated an “International Project on Innovative Nuclear Reactors and Fuel Cycles”, INPRO. The Terms of Reference for INPRO were adopted at a preparatory meeting in November 2000, and the project was finally launched by the INPRO Steering Committee in May 2001. At the General Conference in 2001, first progress was reported, and the General Conference adopted a resolution on “Agency Activities in the Development of Innovative Nuclear Technology” [GC(45)/RES/12, Tab F], giving INPRO a broad basis of support. The resolution recognized the “unique role that the Agency can play in international collaboration in the nuclear field”. It invited both “interested Member States to contribute to innovative nuclear technology activities” at the Agency as well as the Agency itself “to continue it’s efforts in these areas”. Additional endorsement came in a UN General Assembly resolution in December 2001 (UN GA 2001, A/RES/56/94), that again emphasized “the unique role that the Agency can play in developing user requirements and in addressing safeguards, safety and environmental questions for innovative reactors and their fuel cycles” and stressed “the need for international collaboration in the development of innovative nuclear technology”. As of February 2002, the following countries or entities have become members of INPRO: Argentina, Brazil, Canada, China, Germany, India, Russian Federation, Spain, Switzerland, The Netherlands, Turkey and the European Commission. In total, 15 cost-free experts have been nominated by their respective governments or international organizations. The objective of INPRO is to support the safe, sustainable, economic and proliferation resistant use of nuclear technology to meet the global energy needs of the 21st century. Phase I of INPRO was initiated in May 2001. During Phase I, work is subdivided in two subphases: Phase IA (in progress): Selection of criteria and development of methodologies and guidelines for the comparison of different concepts and approaches, taking into account the compilation and review of such concepts and approaches, and determination of user requirements. Phase IB (to be started after Phase IA is completed): Examination of innovative nuclear energy technologies made available by Member States against criteria and requirements. This examination will be co-ordinated by the Agency and performed with participatio of Member States on the basis of the user requirements and methodologies established in Phase IA. In the first phase, six subject groups were established: Resources, Demand and User requirements for Economics; User requirements for the Environment, Fuel cycle and Waste; User requirements for Safety; User requirements for Non-proliferation; User requirements for crosscutting issues; Criteria and Methodology.


2017 ◽  
Vol 2017 ◽  
pp. 1-17
Author(s):  
Muhammad Minhaj Khan ◽  
Jae Min Lee ◽  
Jae Hak Cheong ◽  
Joo Ho Whang

With a view to providing supportive information for the decision-making on the direction of the future nuclear energy systems in Korea (i.e., direct disposal or recycling of spent nuclear fuel) to be made around 2020, quantitative studies on the spent nuclear fuel (SNF) including transuranic elements (TRUs) and a series of economic analyses were conducted. At first, the total isotopic inventory of TRUs in the SNF to be generated from all thirty-six units of nuclear power plants in operation or under planning is estimated based on the Korean government’s official plan for nuclear power development. Secondly, the optimized deployment strategies are proposed considering the minimum number of sodium cooled-fast reactors (SFRs) needed to transmute all TRUs. Finally, direct disposal and Pyro-SFR closed nuclear energy systems were compared using equilibrium economic model and considering reduction of TRUs and electricity generation as benefits. Probabilistic economic analysis shows that the assumed total generation cost for direct disposal and Pyro-SFR closed nuclear energy systems resides within the range of 13.60~33.94 mills/kWh and 11.40~25.91 mills/kWh, respectively. Dominant cost elements and the range of SFR overnight cost which guarantees the economic feasibility of the Pyro-SFR closed nuclear energy system over the direct disposal option were also identified through sensitivity analysis and break-even cost estimation.


Sign in / Sign up

Export Citation Format

Share Document