Experimental Study on Resistance Characteristics in a 3 × 3 Rod Bundle

Author(s):  
Chaoxing Yan ◽  
Changqi Yan ◽  
Licheng Sun ◽  
Yang Wang

Experimental study on resistance of air-water two-phase flow in a vertical 3 × 3 rod bundle was carried out under normal temperature and pressure. The rod diameter and pitch were 8 mm and 11 mm, respectively. The ranges of gas and liquid superficial velocity were 0.013∼3.763 m/s and 0.076∼1.792 m/s, respectively. The result indicated that the existing correlations for calculating frictional coefficient in the rod bundle and local resistance coefficient could not give favorable predictions on the single-phase experimental data. For the case of two-phase flow, eight correlations for calculating two-phase equivalent viscosity poorly predicted the frictional pressure drop, with the mean absolute errors around 60%. Meanwhile, the eight classical two-phase viscosity formulae were evaluated against the local pressure drop at spacer grid. It is shown that Dukler model predicted the experimental data well in the range of Rel<9000 while McAdams correlation was the best for Rel⩾9000. For all the experimental data, Dukler model provided the best prediction with MRE of 29.03%. Furthermore, approaches to calculate two-phase frictional pressure drop and local resistance were proposed by considering mass quality, two-phase Reynolds number and densities in homogenous flow model, resulting in a good agreement with the experimental data.

2021 ◽  
Author(s):  
Baihui Jiang ◽  
Zhiwei Zhou ◽  
Yu Ji

Abstract With compact structure and enhanced heat transfer capacity, helical-coiled once through steam generators (HTSGs) are widely used in the small modular reactors (SMRs). Nevertheless, the inside centrifugal forces make the flow more complicated, and increase the frictional pressure drop, which is closely related to the dual test of alternating thermal stress and flow instability. Therefore, the analysis of the friction factor in helically coiled tubes is significant to the efficient and safe operation of HTSGs. While the friction factor of single-phase flow in helically coiled tubes was fully studied and extensive correlations have been validated by a large amount of experimental data, the friction factor of two-phase flow still lacks feasible prediction due to its much more complexity. The existed correlations of two-phase flow in helically coiled tubes are mostly based on specified experimental parameters, so the applicable range is limited. Few scholars have tried to extend these correlations to broader applicability, but the trivial applicable range is unsuitable for program development or engineering design, which needs an accurate prediction of friction factor in a wider range. In this paper, existing frictional pressure drop correlations are investigated. The accuracy of single-phase frictional pressure drop correlations is verified through the comparison of calculation results. Since the known experimental data cannot cover a wide range of parameters, two assumptions are proposed, and the rationality is verified through the existing experimental data and calculation analysis. Based on the two assumptions and calculation, a set of calculation correlations for frictional pressure drop of two-phase flow in helically coiled tubes are proposed. The accuracy of this calculation model is validated by experimental data. The scope of application of this model is: D / d = 15–100, P = 0.12–6.3MPa, G = 200–1500kg / m2s, which is sufficient to support the design and operation of steam generators and the development of the simulation programs.


Author(s):  
Licheng Sun ◽  
Kaichiro Mishima

2092 data of two-phase flow pressure drop were collected from 18 published papers of which the working fluids include R123, R134a, R22, R236ea, R245fa, R404a, R407C, R410a, R507, CO2, water and air. The hydraulic diameter ranges from 0.506 to 12mm; Relo from 10 to 37000, and Rego from 3 to 4×105. 11 correlations and models for calculating the two-phase frictional pressure drop were evaluated based upon these data. The results show that the accuracy of the Lockhart-Martinelli method, Mishima and Hibiki correlation, Zhang and Mishima correlation and Lee and Mudawar correalion in the laminar region is very close to each other, while the Muller-Steinhagen and Heck correlation is the best among the evaluated correlations in the turbulent region. A modified Chisholm correlation was proposed, which is better than all of the evaluated correlations in the turbulent region and its mean relative error is about 29%. For refrigerants only, the new correlation and Muller-Steinhagen and Heck correlation are very close to each other and give better agreement than the other evaluated correlations.


2004 ◽  
Vol 126 (4) ◽  
pp. 546-552 ◽  
Author(s):  
Peter M.-Y. Chung ◽  
Masahiro Kawaji ◽  
Akimaro Kawahara ◽  
Yuichi Shibata

An adiabatic experiment was conducted to investigate the effect of channel geometry on gas-liquid two-phase flow characteristics in horizontal microchannels. A water-nitrogen gas mixture was pumped through a 96 μm square microchannel and the resulting flow pattern, void fraction and frictional pressure drop data were compared with those previously reported by the authors for a 100 μm circular microchannel. The pressure drop data were best estimated using a separated-flow model and the void fraction increased non-linearly with volumetric quality, regardless of the channel shape. However, the flow maps exhibited transition boundaries that were shifted depending on the channel shape.


2020 ◽  
Vol 368 ◽  
pp. 110815
Author(s):  
Yue Jin ◽  
Fan-Bill Cheung ◽  
Koroush Shirvan ◽  
Stephen M. Bajorek ◽  
Kirk Tien ◽  
...  

Author(s):  
Yuqing Xue ◽  
Huixiong Li ◽  
Tianyou Sheng ◽  
Changjiang Liao

A large amount of air need be transported into the reservoir in the deep stratum to supply oxygen to some microbes in Microbial Enhanced Oil Recovery (MEOR). Air-water two-phase flows downward along vertical pipeline during the air transportation. Base on the experiment data described in this paper, the characteristics of air-water two phase flow patterns were investigated. The flow pattern map of air-water two phase flows in the pipe with inner diameter of 65 mm was drawn, criterions of flow pattern transition were discussed, and the dynamic signals of the pressure and the differential pressure of the two phase flow were recorded to characterize the three basic flow regimes indirectly. The frictional pressure drop of downward flow in vertical pipe must not be disregarded contrast with upward two phase flow in the vertical pipe because the buoyancy must be overcame when the gas flows downward along pipe, and there would be a maximum value of frictional when the flow pattern translated from slug flow to churn flow.


Sign in / Sign up

Export Citation Format

Share Document