Eulerian Two-Phase Flow Modeling of Steam Direct Contact Condensation for the Fukushima Accident Investigation

Author(s):  
Marco Pellegrini ◽  
Giulia Agostinelli ◽  
Hidetoshi Okada ◽  
Masanori Naitoh

Steam condensation is characterized by a relatively large interfacial region between gas and liquid which, in computational fluid dynamic (CFD) analyses, allows the creation of a discretized domain whose average cell size is larger than the interface itself. For this reason generally one fluid model with interface tracking (e.g. volume of fluid method, VOF) is employed for its solution in CFD, since the solution of the interface requires a reasonable amount of cells, reducing the modeling efforts. However, for some particular condensation applications, requiring the computation of long transients or the steam ejected through a large number of holes, one-fluid model becomes computationally too expensive for providing engineering information, and a two-fluid model (i.e. Eulerian two-phase flow) is preferable. Eulerian two-phase flow requires the introduction of closure terms representing the interactions between the two fluids in particular, in the condensation case, drag and heat transfer. Both terms involve the description of the interaction area whose definition is different from the typical one adopted in the boiling analyses. In the present work a simple but effective formulation for the interaction area is given based on the volume fraction gradient and then applied to a validation test case of steam bubbling in various subcooling conditions. It has been shown that this method gives realistic values of bubble detachment time, bubble penetration for the cases of interest in the nuclear application and in the particular application to the Fukushima Daiichi accident.

Author(s):  
Marco Pellegrini ◽  
Giulia Agostinelli ◽  
Hidetoshi Okada ◽  
Masanori Naitoh

Steam condensation is characterized by a relatively large interfacial region between gas and liquid which, in computational fluid dynamic (CFD) analyses, allows the creation of a discretized domain whose average cell size is larger than the interface itself. For this reason generally one fluid model with interface tracking (e.g. volume of fluid method, VOF) is employed for its solution in CFD, since the solution of the interface requires a reasonable amount of cells, reducing the modeling efforts. However, for some particular condensation applications, requiring the computation of long transients or the steam ejected through a large number of holes, one-fluid model becomes computationally too expensive for providing engineering information, and a two-fluid model (i.e. Eulerian two-phase flow) is preferable. Eulerian two-phase flow requires the introduction of closure terms representing the interactions between the two fluids in particular, in the condensation case, drag and heat transfer. Both terms involve the description of the interaction area whose definition is different from the typical one adopted in the boiling analyses. In the present work a simple but effective formulation for the interaction area is given based on the volume fraction gradient and then applied to a validation test case of steam bubbling in various subcooling conditions. It has been shown that this method gives realistic values of bubble detachment time, bubble penetration for the cases of interest in the nuclear application and in the particular application to the Fukushima Daiichi accident.


Author(s):  
Rudolf Schilling ◽  
Moritz Frobenius

The numerical simulations of three types of two-phase flow in centrifugal pump impellers are described. First, the liquid-solid particle flow is modeled by an Euler-Lagrangeian approach assuming a mass concentration less than 5% and particle diameters being less than 1000 microns. The empirical erosion model to predict the local and total wear is calibrated by measurements. Second, the influence of the relative air contents on the head-drop is simulated assuming a relatively small volume fraction and applying a simple one-fluid model. The mixture is characterized by a common density depending on the flow field. Finally, the cavitating flow is studied by implementing the Rayleigh equation into the numerical procedure describing the transient process of bubble growth and collapse. The developed simulation tools are applied to predict the three types of two-phase flows in impellers. Within the defined ranges of application the simulation results agree fairly well with the experimental data.


2017 ◽  
Vol 47 (1) ◽  
pp. 49-68 ◽  
Author(s):  
Arash Kadivar ◽  
Ebrahim Nemati Lay

Abstract Continuous gas-lift in a typical oil well was simulated using computational fluid dynamic (CFD) technique. A multi fluid model based on the momentum transfer between liquid and gas bubbles was employed to simulate two-phase flow in a vertical pipe. The accuracy of the model was investigated through comparison of numerical predictions with experimental data. The model then was used to study the dynamic behaviour of the two-phase flow around injection point in details. The predictions by the model were compared with other empirical correlations, as well. To obtain an optimum condition of gas-lift, the influence of the effective parameters including the quantity of injected gas, tubing diameter and bubble size distribution were investigated. The results revealed that increasing tubing diameter, the injected gas rate and decreasing bubble diameter improve gas-lift performance.


2012 ◽  
Vol 510 ◽  
pp. 790-794
Author(s):  
Hui Sun ◽  
Zhi Yong Zhou

The Eulerian two-fluid model incorporated with the multiple reference frame approach is adopted to predict the gas-liquid two-phase flow in the novel combined top and corner spray degassing tank for aluminum melt. The influence of different parameters, such as gas velocity or hole areas at the tank corners on the gas-liquid flow behavior is also investigated. Results show that little gas emerges near the wall of tank equipped with traditional rotating spray degasser. Using the combined top and corner spray degasser, the distribution of bubbles in the tank, especially near the tank wall, is improved significantly, which advantages the hydrogen removal. With the increasing gas velocity or hole areas at the tank corners, the width of ring zone with low gas volume fraction decreases, and thus enhances the effect of hydrogen removal.


SPE Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Luigi Raimondi

Summary In this paper, I present numerical results of gas/liquid flows in pipelines obtained from a new simulation code. One difference, with respect to other 1D fluid dynamic commercial simulation products, is the use of a compositional approach to the problem: This is rarely found in published articles about gas/liquid flow in the oil and gas industry. It is shown that the algorithm can calculate both pressure and material fast waves generated during the transportation of gas and liquid in pipes. The solution algorithm is based on the application of a two-fluid model to the mass, momentum, and energy conservation equations, which are solved using a mixed implicit-explicit integration schema. Closure equations for the calculation of interface stress are taken from literature articles. A dam-break simulation (i.e., a Riemann initial value problem) is presented as a severe test case for validation of the two-phase flow algorithm. Because the code is able to capture sharp and fast changes in the liquid holdup connected to the formation of pressure waves, it is applied to the simulation of slug flow without the use of steady-state “unit cell” models and slug tracking functions. In this context, the experimental results on pseudoslug formation in inclined pipes at high pressures, published by the Tulsa University Fluid Flow Project (TUFFP), are used to compare simulated results with experimental data. The last part is dedicated to the simulation of some cases taken from a classical flow-map of a fundamental article by Taitel and Dukler (1976). At constant liquid superficial velocity, the formation of liquid slugs and their subsequent termination with the increase of gas flow rate is simulated with details never previously presented.


2021 ◽  
Vol 33 (3) ◽  
pp. 033324
Author(s):  
Alejandro Clausse ◽  
Martín López de Bertodano

2001 ◽  
Vol 123 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Jun Ishimoto ◽  
Mamoru Oike ◽  
Kenjiro Kamijo

The two-dimensional characteristics of the vapor-liquid two-phase flow of liquid helium in a pipe are numerically investigated to realize the further development and high performance of new cryogenic engineering applications. First, the governing equations of the two-phase flow of liquid helium based on the unsteady thermal nonequilibrium multi-fluid model are presented and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the two-phase flow of liquid helium is shown in detail, and it is also found that the phase transition of the normal fluid to the superfluid and the generation of superfluid counterflow against normal fluid flow are conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase. According to these theoretical results, the fundamental characteristics of the cryogenic two-phase flow are predicted. The numerical results obtained should contribute to the realization of advanced cryogenic industrial applications.


Author(s):  
David Heinze ◽  
Thomas Schulenberg ◽  
Lars Behnke

A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.


Sign in / Sign up

Export Citation Format

Share Document