Design Approach for Mitigation of Air Ingress in High Temperature Gas-Cooled Reactor

Author(s):  
Hiroyuki Sato ◽  
Hirofumi Ohashi ◽  
Shigeaki Nakagawa

One important safety design consideration for high temperature gas-cooled reactor (HTGR) is air ingress following a rupture of the reactor pressure boundary such as primary piping. The air intrusion to the reactor core held at high temperature through the break will results in significant oxidation of graphite components and fuels. Such oxidation may leads to the weakening of core support structures as well as fuel element damage and subsequent fission product release. This paper intends to propose a practical solution to protect the reactor from severe oxidation against air ingress accidents without reliance on subsystems. Firstly, a change is made to the center reflector structure to minimize temperature difference during the accident condition in order to reduce buoyancy-driven natural circulation in the reactor. Secondly, a modified structure of the upper reflector is suggested to prevent massive air ingress against a rupture in standpipes. As a preliminary study, a numerical analysis is performed for a typical prismatic-type HTGR to study the effectiveness of the proposed design concept using simplified lumped element models. The analysis considers internal decay heat generation and transient conduction from inner to outer regions at the reactor core, cooling of vessel outer surface by radiation and natural convection, and natural circulation flow in reactor. The results showed that amount of air ingress into the reactor can be significantly reduced with practical changes to local structure in the reactor.

Author(s):  
Joseph P. Yurko ◽  
Katrina M. Sorensen ◽  
Andrew Kadak ◽  
Xing L. Yan

This paper describes the experimental validation of a proposed method that uses a small amount of helium injection to prevent the onset of natural circulation in high temperature gas reactors (HTGR) following a depressurized loss of coolant accident. If this technique can be shown to work, air ingress accidents can be mitigated. A study by Dr. Xing L. Yan et al. (2008) developed an analytical estimate for the minimum injection rate (MIR) of helium required to prevent natural circulation. Yan’s study used a benchmarked CFD model of a prismatic core reactor to show that this method of helium injection would impede natural circulation. The current study involved the design and construction of an experimental apparatus in conjunction with a CFD model to validate Yan’s method. Based on the computational model, a physical experimental model was built and tested to simulate the main coolant pipe rupture of a Pebble Bed Reactor (PBR), a specific type of HTGR. The experimental apparatus consisted of a five foot tall, 2 inch diameter, copper U-tube placed atop a 55-gallon barrel to reduce sensor noise from outside air movement. Hot and cold legs were simulated to reflect the typical natural circulation conditions expected in reactor systems. FLUENT was used to predict the diffusion and circulation phases. Several experimental trials were run with and without helium injection. Results showed that with minimal helium injection, the onset of natural circulation was prevented which suggests that such a method may be useful in the design of high temperature gas reactors to mitigate air ingress accidents.


Author(s):  
Tetsuaki Takeda

The inherent properties of the Very-High-Temperature Reactor (VHTR) facilitate the design of the VHTR with high degree of passive safe performances, compared to other type of reactors. However, it is still not clear if the VHTR can maintain a passive safe function during the primary-pipe rupture accident, or what would be a design criterion to guarantee the VHTR with the high degree of passive safe performances during the accident. The primary-pipe rupture accident is one of the most common of accidents related to the basic design regarding the VHTR, which has a potential to cause the destruction of the reactor core by oxidizing in-core graphite structures and to release fission products by oxidizing graphite fuel elements. It is a guillotine type rupture of the double coaxial pipe at the nozzle part connecting to the side or bottom of the reactor pressure vessel, which is a peculiar accident for the VHTR. This study is to investigate the air ingress phenomena and to develop the passive safe technology for the prevention of air ingress and of graphite corrosion. The present paper describes the influences of a localized natural circulation in parallel channels onto the air ingress process during the primary-pipe rupture accident of the VHTR.


2016 ◽  
Vol 2 (4) ◽  
Author(s):  
Masato Ono ◽  
Atsushi Shimizu ◽  
Makoto Kondo ◽  
Yosuke Shimazaki ◽  
Masanori Shinohara ◽  
...  

In the loss of core cooling test using High Temperature engineering Test Reactor (HTTR), the forced cooling of the reactor core is stopped without inserting control rods into the core and, furthermore, without cooling by the vessel cooling system (VCS) to verify safety evaluation codes to investigate the inherent safety of high-temperature gas-cooled reactor (HTGR) be secured by natural phenomena to make it possible to design a severe accident-free reactor. The VCS passively removes the retained residual heat and the decay heat from the core via the reactor pressure vessel (RPV) by natural convection and thermal radiation. In the test, the local temperature was supposed to exceed the limit from the viewpoint of long-term use at the uncovered water-cooling tube without thermal reflectors in the VCS, although the safety of reactor is kept. Through a cold test, which was carried out by non-nuclear heat input from helium gas circulators (HGCs) by stopping water flow in the VCS, the local higher temperature position was specified in the uncovered water-cooling tube of the VCS, although the temperature was sufficiently lower than the maximum allowable working temperature, and the natural circulation of water had an insufficient cooling effect on the temperature of the water-cooling tube below 1°C. Then, a new safe and secured procedure for the loss of core cooling test was established, which will be carried out soon after the restart of HTTR.


2021 ◽  
Author(s):  
Takeaki Ube ◽  
Tetsuaki Takeda

Abstract A depressurization accident involving the rupture of the primary cooling pipe of the Gas Turbine High Temperature Reactor 300 cogeneration (GTHTR300C), which is a very-high-temperature reactor, is a design-based accident. When the primary pipe connected horizontally to the side of the reactor pressure vessel of GTHTR300C ruptures, molecular diffusion and local natural convection facilitate gas mixing, in addition to air ingress by counter flow. Furthermore, it is expected that a natural circulation flow around the furnace will suddenly occur. To improve the safety of GTHTR300C, an experiment was conducted using an experimental apparatus simulating the flow path configuration of GTHTR300C to investigate the mixing process of a two-component gas of helium and air. The experimental apparatus consisted of a coaxial double cylinder and a coaxial horizontal double pipe. Ball valves were connected to a horizontal inner pipe and outer pipe, and the valves were opened to simulate damage to the main pipe. As a result, it was confirmed that a stable air and helium density stratification formed in the experimental apparatus, and then a natural circulation flow was generated around the inside of the reactor.


Author(s):  
Takeshi Aoki ◽  
Hiroyuki Sato ◽  
Hirofumi Ohashi

Abstract In the thermal hydraulic design of the prismatic-type of the high temperature gas cooled reactor (HTGR), unintended flows such as gap flows between columns, cross flows between column layers and gap flows between permanent reflectors should be analyzed to minimizing the unintended flows. The flow distribution considering unintended flows in the reactor has been evaluated for steady and conservative condition. On the other hand, the transient thermal hydraulic analysis for satisfactorily realistic conditions will be helpful for the design improvement of prismatic-type HTGR. The present study aims to improve the thermal hydraulic system analysis code developed by Japan Atomic Energy Agency based on the RELAP5/MOD3 code and confirm its applicability for the transient flow distribution analysis for prismatic-type HTGRs during anticipated operational occurrences and accidents for its design improvement utilizing experiences on high temperature engineering test reactor (HTTR) design. The calculation model and code were developed and validated to evaluate the detailed flowrate distribution considering the unintended flows in the core and the molecular diffusion that is important to analyze beginning air ingress behavior in an air ingress accident triggered by a rupture of a primary coolant piping in HTGR. It is concluded that a prospect has confirmed to apply the improved thermal hydraulic system analysis code for transient flow distribution analysis for prismatic-type HTGRs.


Author(s):  
Naoto Yanagawa ◽  
Masashi Nomura ◽  
Tetsuaki Takeda ◽  
Shumpei Funatani

This study is to investigate a control method of the natural circulation of the air by the injection of helium gas. A depressurization is the one of the design-basis accidents of a Very High Temperature Reactor (VHTR). When the primary pipe rupture accident occurs in the VHTR, the air is predicted to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Finally, it seems to be probable that the natural circulation flow of the air in the reactor pressure vessel produce continuously. In order to predict or analyze the air ingress phenomenon during the depressurization accident of the VHTR, it is important to develop the method for prevention of air ingress during the accident. In this study, the air ingress process is discussed by comparing the experimental and analytical results of the reverse U-shaped channel which has parallel channels. The experiment of the natural circulation using a circular tube consisted of the reverse U-shaped type has been carried out. The vertical channel is consisted of the one side heated and the other side cooled pipe. The experimental apparatus is filled with the air and one side vertical tube is heated. A very small amount of helium gas is injected from the top of the channel. The velocity and the mole fraction of each gas are also calculated by using heat and mass transfer numerical analysis of multi-component gas. The result shows that the numerical analysis is considered to be well simulated the experiment. The natural circulation of the air has very weak velocity after the injection of helium gas. About 780 seconds later, the natural circulation suddenly produces. The natural circulation flow of the air can be controlled by the method of helium gas injection. The mechanism of the phenomenon is found that mole fraction is changed by the molecular diffusion and the very weak circulation.


Author(s):  
Maria Elizabeth Scari ◽  
Antonella Lombardi Costa ◽  
Claubia Pereira ◽  
Clarysson Alberto Mello da Silva ◽  
Maria Auxiliadora Fortini Veloso

Several efforts have been considered in the development of the modular High Temperature Gas cooled Reactor (HTGR) planned to be a safe and efficient nuclear energy source for the production of electricity and industrial applications. In this work, the RELAP5-3D thermal hydraulic code was used to simulate the steady state behavior of the 10 MW pebble bed high temperature gas cooled reactor (HTR-10), designed, constructed and operated by the Institute of Nuclear and New Energy Technology (INET), in China. The reactor core is cooled by helium gas. In the simulation, results of temperature distribution within the pebble bed, inlet and outlet coolant temperatures, coolant mass flow, and others parameters have been compared with the data available in a benchmark document published by the International Atomic Energy Agency (IAEA) in 2013. This initial study demonstrates that the RELAP5-3D model is capable to reproduce the thermal behavior of the HTR-10.


Author(s):  
Zhe Dong ◽  
Xiaojin Huang ◽  
Liangju Zhang

The modular high-temperature gas-cooled nuclear reactor (MHTGR) is seen as one of the best candidates for the next generation of nuclear power plants. China began to research the MHTGR technology at the end of the 1970s, and a 10 MWth pebble-bed high temperature reactor HTR-10 has been built. On the basis of the design and operation of the HTR-10, the high temperature gas-cooled reactor pebble-bed module (HTR-PM) project is proposed. One of the main differences between the HTR-PM and HTR-10 is that the ratio of height to diameter corresponding to the core of the HTR-PM is much larger than that of the HTR-10. Therefore it is not proper to use the point kinetics based model for control system design and verification. Motivated by this, a nodal neutron kinetics model for the HTR-PM is derived, and the corresponding nodal thermal-hydraulic model is also established. This newly developed nodal model can reflect not only the total or average information but also the distribution information such as the power distribution as well. Numerical simulation results show that the static precision of the new core model is satisfactory, and the trend of the transient responses is consistent with physical rules.


Sign in / Sign up

Export Citation Format

Share Document