Heat Transfer Coefficient Measurement for Downward-Facing Heat Transfer on Curved Rectangular Water Channel

Author(s):  
Jun Yeong Jung ◽  
Yong Hoon Jeong

In-Vessel Retention by External Reactor Vessel Cooling (IVR-ERVC) is method of removing the decay heat by cooling reactor vessel after corium relocation, and is also one of severe accident management strategies. Estimating heat transfer coefficients (HTCs) is important to evaluate heat transfer capability of the ERVC. In this study, the HTCs of outer wall of reactor vessel lower head were experimentally measured under the IVR-ERVC situation of Large Loss of Coolant Accident (LLOCA) condition. Experimental equipment was designed to simulate flow boiling condition of ERVC natural circulation, and based on APR+ design. This study focused on effects of real reactor vessel geometry (2.5 m of radius curvature) and material (SA508) for the HTCs. Curved rectangular water channel (test section) was design to simulate water channel which is between the reactor vessel lower head outer wall and thermal insulator. Radius curvature, length, width and gap size of the test section were respectively 2.5 m, 1 m, 0.07 m and 0.15 m. Two connection parts were connected at inlet and outlet of the test section to maintain fluid flow condition, and its cross section geometry was same with one of test section. To simulate vessel lower head outer wall, thin SA508 plate was used as main heater, and test section supported the main heater. Thickness, width, length and radius curvature of the main heater were 1.2 mm, 0.07 m, 1 m and 2.5 m respectively. The main heater was heated by DC rectifier, and applied heat flux was under CHF value. The test section was changed for each experiment. The HTCs of whole reactor vessel lower head (bottom: 0 ° and top: 90 °) were measured by inclining the test section, and experiments were conducted at four angular ranges; 0–22.5, 22.5–45, 45–67.5 and 67.5–90 °. DI water was used as working fluid in this experiment, and all experiments were conducted at 400 kg/m2s of constant mass flux with atmospheric pressure. The working fluid temperatures were measured at two point of water loop by K-type thermocouple. The main heater surface temperatures were measured by IR camera. The main heater was coated by carbon spray to make uniform surface emissivity, and the IR camera emissivity calibration was also conducted with the coated main heater. The HTCs were calculated by measured main heater surface temperature. In this research, the HTC results of 10, 30, 60 and 90 ° inclination angle were presented, and were plotted with wall super heat.

Author(s):  
Lorenzo Cremaschi

Driven by higher energy efficiency targets and industrial needs of process intensification and miniaturization, nanofluids have been proposed in energy conversion, power generation, chemical, electronic cooling, biological, and environmental systems. In space conditioning and in cooling systems for high power density electronics, vapor compression cycles provide cooling. The working fluid is a refrigerant and oil mixture. A small amount of lubricating oil is needed to lubricate and to seal the sliding parts of the compressors. In heat exchangers the oil in excess penalizes the heat transfer and increases the flow losses: both effects are highly undesired but yet unavoidable. This paper studies the heat transfer characteristics of nanorefrigerants, a new class of nanofluids defined as refrigerant and lubricant mixtures in which nano-size particles are dispersed in the high-viscosity liquid phase. The heat transfer coefficient is strongly governed by the viscous film excess layer that resides at the wall surface. In the state-of-the-art knowledge, while nanoparticles in the refrigerant and lubricant mixtures were recently experimentally studied and yielded convective in-tube flow boiling heat transfer enhancements by as much as 101%, the interactions of nanoparticles with the mixture still pose several open questions. The model developed in this work suggested that the nanoparticles in this excess layer generate a micro-convective mass flux transverse to the flow direction that augments the thermal energy transport within the oil film in addition to the macroscopic heat conduction and fluid convection effects. The nanoparticles motion in the shearing-induced and non-uniform shear rate field is added to the motion of the nanoparticles due to their own Brownian diffusion. The augmentation of the liquid phase thermal conductivity was predicted by the developed model but alone it did not fully explain the intensification on the two-phase flow boiling heat transfer coefficient reported in previous work in the literature. Thus, additional nano- and micro-scale heat transfer intensification mechanisms were proposed.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4617
Author(s):  
Sanghyun Nam ◽  
Dae Yeon Kim ◽  
Youngwoo Kim ◽  
Kyung Chun Kim

Heat transfer under flow boiling is better in a rectangular channel filled with open-cell metal foam than in an empty channel, but the high pressure drop is a drawback of the empty channel method. In this study, various types of metal foam insert configurations were tested to reduce the pressure drop while maintaining high heat transfer. Specifically, we measured the boiling heat transfer and pressure drop of a two-phase vertical upward flow of R245fa inside a channel. To measure the pressure and temperature differences of the metal foam, differential pressure transducers and T-type thermocouples were used at both ends of the test section. While the saturation pressure was kept constant at 5.9 bar, the steam quality at the inlet of the test section was changed from 0.05 to 0.99. The channel height, moreover, was 3 mm, and the mass flux ranged from 133 to 300 kg/m2s. The two-phase flow characteristics were observed through a high-speed visualization experiment. Heat transfer tended to increase with the mean vapor quality, and, as expected, the fully filled metal foam channel offered the highest thermal performance. The streamwise insert pattern model had the lowest heat transfer at a low mass flux. However, at a higher mass flux, the three different insert models presented almost the same heat transfer coefficients. We found that the streamwise pattern model had a very low pressure drop compared to that of the spanwise pattern models. The goodness factors of the flow area and the core volume of the streamwise patterned model were higher than those of the full-filled metal foam channel.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012088
Author(s):  
A. A. Litvintceva ◽  
N. I. Volkov ◽  
N. I. Vorogushina ◽  
V. A. Moskovskikh ◽  
V. V. Cheverda

Abstract Heat pipes are a good solution for temperature stabilization, for example, of microelectronics, because these kinds of systems are without any moving parts. Experimental research of the effect of operating parameters on the heat transfer in a cylindrical heat pipe has been conducted. The effect of the working fluid properties and the porous layer thickness on the heat flux and temperature difference in the heat pipe has been investigated. The temperature field of the heat pipe has been investigated using the IR-camera and K-type thermocouples. The data obtained by IR-camera and K-type thermocouples have been compared. It is demonstrated the power transferred from the evaporator to the condenser is a linear function of the temperature difference between them.


Author(s):  
Ayman Megahed ◽  
Ibrahim Hassan ◽  
Tariq Ahmad

The present study focuses on the experimental investigation of boiling heat transfer characteristics and pressure drop in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 295 μm, width of 254 μm, and a length of 16 mm. Un-encapsulated Thermochromic liquid Crystals (TLC) are used in the present work to enable nonintrusive and high spatial resolution temperature measurements. This measuring technique is used to provide accurate full and local surface-temperature and heat transfer coefficient measurements. Experiments are carried out for mass velocities ranging between 290 to 457 kg/m2.s and heat fluxes from 6.04 to 13.06 W/cm2 using FC-72 as the working fluid. Experimental results show that the pressure drop increases as the exit quality and the flow rate increase. High values of heat transfer coefficient can be obtained at low exit quality (xe < 0.2). However, the heat transfer coefficient decreases sharply and remains almost constant as the quality increases for an exit quality higher than 0.2.


Author(s):  
Hailei Wang ◽  
Richard Peterson

Flow boiling and heat transfer enhancement in four parallel microchannels using a dielectric working fluid, HFE 7000, was investigated. Each channel was 1000 μm wide and 510 μm high. A unique channel surface enhancement technique via diffusion bonding a layer of conductive fine wire mesh onto the heating wall was developed. According to the obtained flow boiling curves for both the bare and mesh channels, the amount of wall superheat was significantly reduced for the mesh channel at all stream-wise locations. This indicated that the nucleate boiling in the mesh channel was enhanced due to the increase of nucleation sites the mesh introduced. Both the nucleate boiling dominated and convective evaporation dominated regimes were identified. In addition, the overall trend for the flow boiling heat transfer coefficient, with respect to vapor quality, was increasing until the vapor quality reached approximately 0.4. The critical heat flux (CHF) for the mesh channel was also significantly higher than that of the bare channel in the low vapor quality region. Due to the fact of how the mesh was incorporated into the channels, no pressure drop penalty was identified for the mesh channels. Potential applications for this kind of mesh channel include high heat-flux electronic cooling systems and various energy conversion systems.


Author(s):  
Yuhao Lin ◽  
Junye Li ◽  
Kan Zhou ◽  
Wei Li ◽  
Kuang Sheng ◽  
...  

Abstract The micro structured surfaces have significant impact on the flow patterns and heat transfer mechanisms during the flow boiling process. The hydrophobic surface promotes bubble nucleation while the hydrophilic surface supplies liquid to a heating surface, thus there is a trade-off between a hydrophobic and a hydrophilic surface. To examine the effect of heterogeneous wetting surface on flow boiling process, an experimental investigation of flow boiling in a rectangular vertical narrow microchannel with the heterogeneous wetting surface was conducted with deionized water as the working fluid. The heat transfer characteristics of flow boiling in the microchannel was studied and the flow pattern was photographed with a high-speed camera. The onset of flow boiling and heat transfer coefficient were discussed with the variation of heatfluxes and mass fluxes, the trends of which were analyzed along with the flow patterns. During the boiling process, the dominated heat transfer mechanism was nucleate boiling, with numerous nucleate sites between the hydrophilic/hydrophobic stripes and on the hydrophobic ones. In the meantime, after the merged bubbles were constrained by the channel walls, it would be difficult for them to expand towards upstream since they were restricted by the contact line between hydrophilic/hydrophobic stripes, thereby reduce the flow instability and achieve remarkable heat transfer performance.


Author(s):  
Kwang-Hyun Bang ◽  
Kun-Eui Hong ◽  
In-Seon Hwang

This paper reports an experimental study on flow boiling of water in a minichannel. Flow boiling heat transfer coefficients and pressure drops were measured and the data were compared with existing correlations. The effect of pressure was the major objectives in this study and the range of pressure was 1 to 18 bars. The experimental apparatus consisted mainly of a minichannel test section, gear pump, pre-heater, pressurizer, condenser and evaporator. The evaporator was used for variation of vapor quality at the inlet of test section. The pressurizer controls the desired system pressure. The test section is a round tube of 1.73 mm inside diameter, made of 316 stainless steel. The test section and the evaporator tubes were heated by DC electric current through the tubes. The measured flow boiling heat transfer coefficients showed two distinct regions; relatively high heat transfer coefficients at low vapor quality and lower heat transfer coefficients at higher vapor quality. This observation implies the change of flow regime, slug to annular flow. Comparisons of the experimental data and the prediction of correlations (Gungor & Winterton, 1987; Tran et al., 1996; Kandlikar, 2003) showed large discrepancy in both regions.


Author(s):  
A. Richenderfer ◽  
A. Kossolapov ◽  
J. H. Seong ◽  
G. Saccone ◽  
M. Bucci ◽  
...  

The development and validation of mechanistic boiling heat transfer models has been a focal point in the efforts to improve the efficiency and profitability of power generation systems, e.g. nuclear reactors. The primary goal of these models is improving the accuracy of boiling heat transfer simulations and reducing the uncertainty margins that affect both the design and the safety of a system. However, the emergence of these models has also stimulated the need for high-fidelity experiments and experimental data for validation and verification. In this work we present first-of-a-kind data of heat flux partitioning in boiling heat transfer, obtained using cutting-edge diagnostics and post-processing techniques. A HSV camera was used to visualize the boiling surface at 10,000 frames per second with simultaneous front and side views of the two-phase flow. A high-speed IR camera was used to capture the 2-D radiative signal from the boiling surface to visualize bubble nucleation, growth and detachment at a 115 μm/pixel resolution at 2,500 frames per second. A coupled radiation-conduction calibration model was used to calibrate the IR data and extract the full local temperature and heat flux distributions on the boiling surface, which enable a direct measurement of the partitioned heat fluxes. Here we report the results of investigations performed in flow boiling conditions with a mass flux of 500 kg/m2/s, at atmospheric pressure and 10 K of subcooling. These data will be leveraged to inform the development and validation of the next generation of mechanistic boiling heat transfer models, to be used in Computational Fluid Dynamics (CFD) codes for the design and the safety analysis of nuclear reactors.


Author(s):  
M. Cortina Di´az ◽  
H. Boye ◽  
I. Hapke ◽  
J. Schmidt ◽  
Y. Staate ◽  
...  

Flow boiling heat transfer characteristics of water and hydrocarbons in mini and microchannels are experimentally studied. Two different test section geometries are employed; a circular channel with a hydraulic diameter of 1500 μm, and rectangular channels with height values of 300–700 μm and a width of 10mm. In both facilities the fluid flows upwards and the test sections, made of the nickel alloy Inconel 600, are directly electrically heated. Thus the evaporation takes place under the defined boundary condition of constant heat flux. Mass fluxes between 25 and 350 kg/(m2s) and heat fluxes from 20 to 350 kW/m2 at an inlet pressure of 0.3 MPa are examined. Infrared thermography is applied to scan the outer wall temperatures. These allow the identification of different boiling regions, boiling mechanisms and the determination of the local heat transfer coefficients. Measurements are carried out in initial, saturated and post-dryout boiling regions. The experimental results in the region of saturated boiling are compared with available correlations and with a physically founded model developed for convective boiling.


Author(s):  
Walter Villanueva ◽  
Chi-Thanh Tran ◽  
Pavel Kudinov

An in-vessel stage of a severe core melt accident in a Nordic type Boiling Water Reactor (BWR) is considered wherein a decay-heated pool of corium melt inflicts thermal and mechanical loads on the lower-head vessel wall. This process induces creep leading to a mechanical failure of the reactor vessel wall. The focus of this study is to investigate the effect of Control Rod Guide Tube (CRGT) and top cooling on the modes of global vessel failure of the lower head. A coupled thermo-mechanical creep analysis of the lower head is performed and cases with and without CRGT and top cooling are compared. The debris bed heat-up, re-melting, melt pool formation, and heat transfer are calculated using the Phase-change Effective Convectivity Model and transient heat transfer characteristics are provided for thermo-mechanical strength calculations. The creep analysis is performed with the modified time hardening creep model and both thermal and integral mechanical loads on the reactor vessel wall are taken into account. Known material properties of the reactor vessel as a function of temperature, including the creep curves, are used as an input data for the creep analysis. It is found that a global vessel failure is imminent regardless of activation of CRGT and top cooling. However, if CRGT and top cooling is activated, the mode and timing of failure is different compared to the case with no CRGT and top cooling. More specifically, with CRGT and top cooling, there are two modes of global vessel failure depending on the size of the melt pool: (a) ‘ballooning’ of the vessel bottom for smaller pools, and (b) ‘localized creep’ concentrated within the vicinity of the top surface of the melt pool for larger pools. Without CRGT and top cooling, only a ballooning mode of global vessel failure is observed. Furthermore, a considerable delay (about 1.4 h) on the global vessel failure is observed for the roughly 30-ton debris case if CRGT and top cooling is implemented. For a much larger pool (roughly 200-ton debris), no significant delay on the global vessel failure is observed when CRGT and top cooling is implemented, however, the liquid melt fraction and melt superheat are considerably higher in non-cooling case.


Sign in / Sign up

Export Citation Format

Share Document