Studies on Safety Assessment Method for Operating License Extension of Nuclear Power Plants in China

Author(s):  
Zhilin Chen ◽  
Ping Huang ◽  
Chunhui Wang ◽  
Zhiyuan Chi ◽  
Fangjie Shi ◽  
...  

It’s the trend to extend the operating license time, called Operating License Extension (OLE) in China, of nuclear power plants (NPPs) in the future. It needs to be adequately demonstrated by licensees and approved by the regulator to gain an extended license time, such as 20 years. The demonstration methods for OLE are different among countries due to the different management systems for NPPs. Safety assessment, environment effect evaluation and update of the final safety analysis report (FSAR) will be the main aspects during OLE demonstration of NPPs in China according to the technical policy issued by National Nuclear Safety Administration (NNSA). Technical methods for scoping and screening, aging management review and time-limited aging analyses, which are the main contents of safety assessment are established based on the technical policy drafted by NNSA and international experiences in order to assist the operators to implement the safety assessment for OLE of NPP.

2016 ◽  
pp. 22-26
Author(s):  
Ye. Bilodid ◽  
Yu. Kovbasenko

The paper presents comparison of regular TVSA with average enrichment of 4,386% and hypothetical TVSA with enrichment of 10% based on design parameters and materials of TVSA fuel assemblies produced by TVEL (Russia), which today are widely used at nuclear power plants in Ukraine. It is shown that implementation of new fuel assemblies will result in improved use of fuel and increase of installed capability factor. At the same time, fresh and spent fuel management systems shall be modernized to meet relevant nuclear safety criteria. The paper analyzes possible criticality initiation at different stages of severe accidents related to core melt and using fuel with higher enrichment.


2021 ◽  
Author(s):  
Le Li ◽  
Zhihui Zhang ◽  
Chao Gao ◽  
Fei Zhou ◽  
Guangqiang Ma

Abstract With the development of digital instrument and control technology for nuclear power plants in recent decades, communication networks have become an important part of safety digital control systems, which takes charge in data exchange between the various sub-systems, and extremely impact on the reliability and safety of the entire I&C system. Traditional communication systems where some special features, such as reliability, safety, real-time, certainty, and independence are not strictly required are various illustrated. However, how to implement a communication system in a safety I&C system is rarely stated in current research. In this research, a reliable safety communication system applied in nuclear power plants is designed and analyzed. The five key characteristics of nuclear safety communication networks are explained, followed by explanation of how to achieve these characteristics. The analysis and verification of the designed system are also stated in this paper, which contributes to proving that the designed nuclear safety communication system could applied in the nuclear power plants.


2021 ◽  
Author(s):  
Yuhang Zhang ◽  
Zhijian Zhang ◽  
He Wang ◽  
Lixuan Zhang ◽  
Dabin Sun

Abstract To ensure nuclear safety and prevent or mitigate the consequences of accidents, many safety systems have been set up in nuclear power plants to limit the consequences of accidents. Even though technical specifications based on deterministic safety analysis are applied to avoid serious accidents, they are too poor to handle multi-device managements compared with configuration risk management which computes risks in nuclear power plants based on probabilistic safety assessment according to on-going configurations. In general, there are two methodologies employed in configuration risk management: living probabilistic safety assessment (LPSA) and risk monitor (RM). And average reliability databases during a time of interest are employed in living probabilistic safety assessment, which may be naturally applied to make long-term or regular management projects. While transient risk databases are involved in risk monitor to measure transient risks in nuclear power plants, which may be more appropriate to monitor the real-time risks in nuclear power plants and provide scientific real-time suggestions to operators compared with living probabilistic safety assessment. And this paper concentrates on the applications and developments of living probabilistic safety assessment and risk monitor which are the mainly foundation of the configuration risk management to manage nuclear power plants within safe threshold and avoid serious accidents.


2012 ◽  
Vol 260-261 ◽  
pp. 103-106
Author(s):  
Yi Chun Lin ◽  
Yung Nane Yang

The ripples of the tsunami crisis in Japan triggered introspections of nuclear plant safety issues in the worldwide. Many countries have claimed the suspension of nuclear power plants. However, some countries such as Taiwan, under nearly 99% energy is exported, the disasters force government and citizen to face the importance of nuclear safety, especially the neighborhoods nearby the nuclear power plants. We have to face the nuclear safety since there is no other alternative energy presently. The 3rd nuclear power plant located in the south of Taiwan, which has the same geographic features with Fukushima, Japan. Presently, there is no precedent in Taiwan of precaution and rescue team and civil supervised mechanic on nuclear security issue. This paper will review according to transparent information, public participation and cross-organization cooperation to propose the execution and work division principles, including information monitor, educational propagation, hide and evacuation, emergence aid and care, rear and refuge service. The ultimate target is to establish self-governance inside nearby neighborhood to confront nuclear disaster at the critical moment.


Sign in / Sign up

Export Citation Format

Share Document