Development of Wireless Tomography System to Measure Solid-Liquid Flow in Rotating Body

Author(s):  
Yuya Atagi ◽  
Yuya Akimoto ◽  
Fumiya Nagae ◽  
Kazuya Okawa ◽  
Yoshiyuki Iso ◽  
...  

A wireless tomography system has been developed to measure the real-time behavior of solid-liquid two phase flow in the centrifuge for controlling a rotational velocity and particle supply rate. The purpose of this study is development of real-time behavior of solid-liquid two phase flow measurement technique and image conductivity distribution in rotating body because a technique for measuring the behavior of solid-liquid two phase flow in the centrifuges has not existed yet. In this study, a device to measure wirelessly behavior of solid-liquid two phase flow in stationary body has developed as a preliminary to measure in rotating body. A centrifugation technology for industry process should be improved to obtain more effective separation, shorten process time and save energy. These requirements are achieved by optimizing rotational velocity and particle supply rate. The real-time measurement of behavior of solid-liquid two phase flow for controlling the rotational velocity and the particle supply rate is essential. In other words, the real-time behavior of solid-liquid two phase flow measurement and the rotational velocity control become innovative technologies. Typical behavior of solid-liquid two phase measurement technics with easy handling in particles liquid two-phase flow uses process tomography because the process tomography is suitable for real-time measurement in a rotating body. Process tomography has high temporal resolution. This detector was used with the wireless because electrical cables are not available for centrifuges under high speed rotational condition. This wireless tomography system was used for a lab scale rotating machinery measurement experiment. Consequently, we could wirelessly measure the behavior of solid-liquid two phase flow in stationary body in real time and get data to image the behavior of solid-liquid two phase flow. This result images the behavior of solid-liquid two phase flow. Observing it enable to control a rotational velocity and particle supply rate. So this wireless tomography system can separate solid-liquid two phase flow efficiently.

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5697
Author(s):  
Chang Sun ◽  
Shihong Yue ◽  
Qi Li ◽  
Huaxiang Wang

Component fraction (CF) is one of the most important parameters in multiple-phase flow. Due to the complexity of the solid–liquid two-phase flow, the CF estimation remains unsolved both in scientific research and industrial application for a long time. Electrical resistance tomography (ERT) is an advanced type of conductivity detection technique due to its low-cost, fast-response, non-invasive, and non-radiation characteristics. However, when the existing ERT method is used to measure the CF value in solid–liquid two-phase flow in dredging engineering, there are at least three problems: (1) the dependence of reference distribution whose CF value is zero; (2) the size of the detected objects may be too small to be found by ERT; and (3) there is no efficient way to estimate the effect of artifacts in ERT. In this paper, we proposed a method based on the clustering technique, where a fast-fuzzy clustering algorithm is used to partition the ERT image to three clusters that respond to liquid, solid phases, and their mixtures and artifacts, respectively. The clustering algorithm does not need any reference distribution in the CF estimation. In the case of small solid objects or artifacts, the CF value remains effectively computed by prior information. To validate the new method, a group of typical CF estimations in dredging engineering were implemented. Results show that the new method can effectively overcome the limitations of the existing method, and can provide a practical and more accurate way for CF estimation.


2007 ◽  
Vol 27 (Supplement1) ◽  
pp. 109-110
Author(s):  
Junichi UEMATSU ◽  
Kazuya ABE ◽  
Xiaoran YU ◽  
Tatsuya HAZUKU ◽  
Masaki OSHIMA ◽  
...  

1982 ◽  
Vol 15 (4) ◽  
pp. 311-313 ◽  
Author(s):  
HIROYASU OHASHI ◽  
TAKUO SUGAWARA ◽  
KEN-ICHI KIKUCHI ◽  
MORITO TAKEDA

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Benliang Xu ◽  
Zuchao Zhu ◽  
Zhe Lin ◽  
Dongrui Wang

Purpose The study aims to decrease the effect of solid particles on a butterfly valve, which will cause seal failure and leakage, providing a reference for anti-wear design. Design/methodology/approach In this paper, computational fluid dynamics discrete element method (CFD-DEM) simulation was conducted to study the solid–liquid two-phase flow characteristics and erosion characteristics of a butterfly valve with a different opening. Findings Abrasion at 10% opening is affected by high-speed jets in upper and lower parts of the pipeline, where the erosion is intense. The impact of the jet on the upper part of 20% opening begins to weaken. With the top backflow vortex disappearing, the effect of lower jet is enhanced. Meanwhile, the bottom backflow vortex phenomenon is obvious, and the abrasion position moves downward. At 30% opening, the velocity is further weakened, and the circulation effect of lower flow channel is more obvious than that of the upper one. Originality/value It is the first time to use DEM to investigate the two-phase flow and erosion characteristics at a small opening of a butterfly valve, considering the effect of inter-particle collision. Therefore, this study carries on the thorough analysis and discussion. At the same opening degree, with increasing of the particle size, the abrasion of valve frontal surface increases when the size is less than 150 µm and decreases when it is greater than 150 µm. For the valve backflow surface, this boundary value becomes 200 µm. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0264/


1994 ◽  
pp. 11-19
Author(s):  
Hitoshi Gotoh ◽  
Tetsuro Tsujimoto ◽  
Hiroji Nakagawa

Sign in / Sign up

Export Citation Format

Share Document