Investigation of Air Ingress Into a Vacuum Vessel Related to Particle Re-Suspension and Distribution for Dust Issues in ITER

Author(s):  
Emmanuel Porcheron ◽  
Pascal Lemaitre

During normal operation of the ITER tokamak, few hundred kilograms of dust containing beryllium (Be) and tungsten (W) will be produced due to the erosion of the walls of the vacuum chamber by the plasma. During a loss of coolant accident (LOCA) or a loss of vacuum accident by air ingress (LOVA), hydrogen could be produced by dust oxidation with steam. Evaluation of the risk of dust and hydrogen explosion, that may lead to a loss of containment, requires studying the physical processes involved in the dust re-suspension and its distribution in the tokamak chamber. This experimental study is conducted by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) to simulate dust re-suspension phenomena induced by high velocity jet under low pressure conditions. Tests are conducted in a large scale facility (TOSQAN, 7 m3) able to reproduce primary vacuum conditions (1 mbar). Optical diagnostics such as PIV technique (Particles Image Velocimetry) are implemented on the facility to provide time resolved measurements of the dust re-suspension in terms of phenomenology and velocity. We present in this paper the TOSQAN facility with its configuration for studying dust re-suspension under low pressure conditions and underway experiments showing the mechanism of dust re-suspension by sonic and supersonic flows.

Author(s):  
S. P. Saraswat ◽  
P. Munshi ◽  
A. Khanna ◽  
C. Allison

The initial design of ITER incorporated the use of carbon fiber composites in high heat flux regions and tungsten was used for low heat flux regions. The current design includes tungsten for both these regions. The present work includes thermal hydraulic modeling and analysis of ex-vessel loss of coolant accident (LOCA) for the divertor (DIV) cooling system. The purpose of this study is to show that the new concept of full tungsten divertor is able to withstand in the accident scenarios. The code used in this study is RELAP/SCADAPSIM/MOD 4.0. A parametric study is also carried out with different in-vessel break sizes and ex-vessel break locations. The analysis discusses a number of safety concerns that may result from the accident scenarios. These concerns include vacuum vessel (VV) pressurization, divertor temperature profile, passive decay heat removal capability of structure, and pressurization of tokamak cooling water system. The results show that the pressures and temperatures are kept below design limits prescribed by ITER organization.


2013 ◽  
Vol 731 ◽  
Author(s):  
Grégoire Lemoult ◽  
Jean-Luc Aider ◽  
José Eduardo Wesfreid

AbstractUsing a large-time-resolved particle image velocimetry field of view, a developing turbulent spot is followed in space and time in a rectangular channel flow for more than 100 advective time units. We show that the flow can be decomposed into a large-scale motion consisting of an asymmetric quadrupole centred on the spot and a small-scale part consisting of streamwise streaks. From the temporal evolution of the energy of the streamwise and spanwise velocity perturbations, it is suggested that a self-sustaining process can occur in a turbulent spot above a given Reynolds number.


Author(s):  
Stuart I. Benton ◽  
Chiara Bernardini ◽  
Jeffrey P. Bons ◽  
Rolf Sondergaard

Efforts to reduce blade count and avoid boundary layer separation have led to low-pressure turbine airfoils with significant increases in loading as well as front-loaded pressure distributions. These features have been independently shown to increase losses within the secondary flow field at the endwall. Compound angle blowing from discrete jets on the blade suction surface near the endwall has been shown to be effective in reducing these increased losses and enabling the efficient use of highly loaded blade designs. In this study, experiments are performed on the front loaded L2F low-pressure turbine airfoil in a linear cascade. The required mass flow is reduced by decreasing hole count from previous configurations and from the introduction of unsteady blowing. The effects of pulsing frequency and duty cycle are investigated using phase-locked stereo particle image velocimetry to demonstrate the large scale movement and hysteresis behavior of the passage vortex interacting with the pulsed jets. Total pressure loss contours at the cascade outlet demonstrate that the efficiency benefit is maintained with the use of unsteady forcing.


2018 ◽  
Vol 842 ◽  
pp. 554-590 ◽  
Author(s):  
A. Laskari ◽  
R. de Kat ◽  
R. J. Hearst ◽  
B. Ganapathisubramani

Time-resolved planar particle image velocimetry was used to analyse the structuring of a turbulent boundary layer into uniform momentum zones (UMZs). The instantaneous peak-detection method employed by Adrian et al. (J. Fluid Mech., vol. 422, 2000, pp. 1–54) and de Silva et al. (J. Fluid Mech., vol. 786, 2016, pp. 309–331) is extended to account for temporal coherence of UMZs. The resulting number of zones detected appears to follow a normal distribution at any given instant. However, the extreme cases in which the number of zones is either very high or very low, are shown to be linked with two distinct flow states. A higher than average number of zones is associated with a large-scale $Q2$ event in the log region which creates increased small-scale activity within that region. Conversely, a low number of zones corresponds to a large-scale $Q4$ event in the log region and decreased turbulent activity away from the wall. The residence times, within the measurement plane, of zones belonging to the latter scenario are shown to be on average four times larger than those of zones present during higher than average zone structuring states. For both cases, greater residence times are observed for zones of higher momentum that are generally closer to the free stream.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Ki-Yong Choi ◽  
Yeon-Sik Kim ◽  
Chul-Hwa Song ◽  
Won-Pil Baek

A large-scale thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been operated by KAERI. The reference plant of ATLAS is the APR1400 (Advanced Power Reactor, 1400 MWe). Since 2007, an extensive series of experimental works were successfully carried out, including large break loss of coolant accident tests, small break loss of coolant accident tests at various break locations, steam generator tube rupture tests, feed line break tests, and steam line break tests. These tests contributed toward an understanding of the unique thermal-hydraulic behavior, resolving the safety-related concerns and providing validation data for evaluation of the safety analysis codes and methodology for the advanced pressurized water reactor, APR1400. Major discoveries and lessons found in the past integral effect tests are summarized in this paper. As the demand for integral effect tests is on the rise due to the active national nuclear R&D program in Korea, the future prospects of the application of the ATLAS facility are also discussed.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012088
Author(s):  
Mengdi Dai ◽  
Xiaomo Wang

Abstract Helium Cooled Pebble Bed Breeding Blanket (HCPB BB) is a kind of concept for the European demonstration fusion reactor (DEMO). The blanket attachment system plays an important role in the mechanical connection of the BB and vacuum vessel. Typically, the mechanical and thermal loads should meet the requirement to avoid collapse of the system with off-normal conditions, e.g., under ex-vessel Loss of Coolant Accident (LOCA. This paper investigates the loading requirement corresponding to the maximum stress that can sustain to avoid the LOCA condition. Firstly, a model of the BB is constructed using SolidWorks. Then, stress analysis is carried out based on the cross section of the blanket. Through simulation, the critical condition for the LOCA case and the maximum stress value for the model are obtained. According to the relevant size dimension from the reference, the blanket’s cross section is drawn, and one can get the stress field under the ex-vessel LOCA through stress analysis. The stress distribution under the ex-vessel LOCA condition is simulated to find out the maximum stress field that the blanket can sustain through this paper. The significance is to predict the possible conditions leading to an accident and find possible methods to avoid them.


Author(s):  
Nan Yu ◽  
Xiaoliang Fu ◽  
Zheng Du ◽  
Lifang Liu ◽  
Zhen Cao ◽  
...  

Experiment about intermediate-break loss-of coolant accident with 17% break at cold leg was performed in OECD/NEA ROSA-2 project on Large Scale Test Facility (LSFT). Safety injection was assumed single failure and only injected into intact loop. Before the loop seal clearing, the liquid level dropped obviously and the core dryout took place. ATHLET Mod 2.1 Cycle A was used to do the post-test calculations of this test. The major calculated parameters were compared with the test data. The trend of the prediction results fit well with that of the test data, and the cause of the deviations was analyzed.


Sign in / Sign up

Export Citation Format

Share Document