Simulation of Behaviors of a One-Third Scale Containment Model Test

Author(s):  
Guopeng Ren ◽  
Rong Pan ◽  
Feng Sun

Reactor containment of a nuclear power plant is a structure to ensure the safety of nuclear power plant. It acts as the last barrier to prevent the release of radioactive materials from NPP during accidents. Finite element models were established to simulate a 1/3 scale model of a reactor containment building under leakage test pressure. General finite element software ANSYS were applied. The nonlinear behavior of containment materials, geometric were taken into account in the analysis. The reliability of the finite element model was verified through the comparison of theoretical analysis results with experimental results. In the ANSYS finite element model, the concrete, steel bars and prestress tendons were separated and the prestress tendons were considered by the method of cooling method on the prestress tendon elements. The mechanical properties of the finite element model in the prestress tension process and the absolute internal pressure of 0.52MPa were analyzed. Transient and time dependent losses were taken into account at the same time during the calculation of prestress of tendons, so as to calculate effective prestress at different locations of tendons. Calculation results of prestress losses show that the prestress losses at the hole of equipment hatch are larger than the other areas. The results show that, the deformation of over-all structure of the containment is shrink inward under the action of prestress. And the simulation can achieve the consistent deformation effect between tendons and concrete. The maximum radial displacement of the whole containment structure is located at of 10 ° ∼ 20 °area on the right of the hole of the gate. The effect of expansion deformation of the containment caused by design internal pressure is insufficient to offset the inward shrink effect generated by tendons, and the over-all structure of the concrete containment scale model is mainly under compressive stress. The containment test model is still with a large safety margin under the action of design internal pressure. The largest tensile stress is on the up and down areas of the internal sides of the equipment hatch, dome area close to ring beam, and bottom of perimeter wall close to the base slab. There is possibility of cracking on the concrete in limited local zones. This benchmark can provide a reference for engineering design of containment.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sang-Uk Han ◽  
Dae-Gyun Ahn ◽  
Myeong-Gon Lee ◽  
Kwon-Hee Lee ◽  
Seung-Ho Han

The structural integrity of valves that are used to control cooling waters in the primary coolant loop that prevents boiling within the reactor in a nuclear power plant must be capable of withstanding earthquakes or other dangerous situations. In this study, numerical analyses using a finite element method, that is, static and dynamic analyses according to the rigid or flexible characteristics of the dynamic properties of a 200A butterfly valve, were performed according to the KEPIC MFA. An experimental vibration test was also carried out in order to verify the results from the modal analysis, in which a validated finite element model was obtained via a model-updating method that considers changes in thein situexperimental data. By using a validated finite element model, the equivalent static load under SSE conditions stipulated by the KEPIC MFA gave a stress of 135 MPa that occurred at the connections of the stem and body. A larger stress of 183 MPa was induced when we used a CQC method with a design response spectrum that uses 2% damping ratio. These values were lower than the allowable strength of the materials used for manufacturing the butterfly valve, and, therefore, its structural safety met the KEPIC MFA requirements.


2013 ◽  
Vol 330 ◽  
pp. 872-877
Author(s):  
Yi Qiang Xiang ◽  
Li Si Liu ◽  
Shao Jun Li

Based on the results of experiment, this paper discusses about the updating and validation of accurate finite element model for damage identification of the steel-concrete composite box girder bridge. Taking a 5 meters long steel-concrete composite box girder bridge as the research object and the finite element model is established. By means of scale model test the updating of the accurate finite element model has been completed and validation is confirmed.


2012 ◽  
Vol 166-169 ◽  
pp. 588-592
Author(s):  
Zhi Gang Li ◽  
Ying Chao Li ◽  
Shu Qing Wang ◽  
Bin Yang

In this paper, the finite element model of a steel jacket scale model is updated using modal parameters identified by modal test. Updating parameters are selected based on sensitivity analysis by solving modal energies. And then, a two-steps updating process is carried out using different parameters and the Cross-Model Cross-Mode (CMCM) model updating method is applied in each step. Results indicate that with selection of updating parameters and sensitivity analysis, CMCM method can update the finite element model with physical meanings.


2013 ◽  
Vol 313-314 ◽  
pp. 1210-1213
Author(s):  
Ji Wang ◽  
Jian Hua Zheng

The finite element model of electric stop valve with flange bolts preload and valve stem force was established to improve the valve stress calculation method which was based only on action of fluid pressure, thermal stresses and pipe reaction forces. The principle and application of pretension load elements were expounded. By ANSYS, the stresses of this valve with preload and valve stem force were calculated, and the Mises equivalent stresses contour and some values of key position of whole valve were obtained. The results indicate the influence of the stresses on the valve caused by preload of bolt mounted on the flange and valve stem force can not be ignored.


2021 ◽  
Vol 7 (4) ◽  
pp. 34-41
Author(s):  
Lam Dong Vu Lam ◽  
Ngoc Dong Pham ◽  
Dinh Kien Nguyen ◽  
Dai Minh Nguyen ◽  
Tien Thinh Do

AP1000 is a nuclear power plant developed by Westinghouse based on an advanced passive safety feature, and it is one of selected technologies for Ninh Thuan 2 Nuclear Power Plant. The dynamic behavior of the plant under earthquakes is the most concerned in design and construction of the plant. This paper presents a seismic analysis of the AP1000 nuclear island structure by using the computational finite element software ANSYS. A 3D finite element model for the structure is developed and its dynamic response, including the time histories for displacements, velocities andaccelerations, deformed configurations and von Mises stresses of the structure are obtained for America El Centro (6.9 Richter) and Vietnam Dien Bien (5.3 Richter) earthquakes. A comparison on the dynamic response of the structure under the two earthquakes is given, and the dynamic behavior of the structure under the earthquakes is discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


2001 ◽  
Author(s):  
Y. W. Kwon ◽  
J. A. Lobuono

Abstract The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax’s biodynamical response from a projectile impact. The finite element model of the human thorax consists of the thoracic skeleton, heart, lungs, major arteries, major veins, trachea, and bronchi. The finite element model of the human thorax is validated by comparing the model’s results to experimental data obtained from cadavers wearing a protective body armor system undergoing a projectile impact.


Author(s):  
V. Ramamurti ◽  
D. A. Subramani ◽  
K. Sridhara

Abstract Stress analysis and determination of eigen pairs of a typical turbocharger compressor impeller have been carried out using the concept of cyclic symmetry. A simplified model treating the blade and the hub as isolated elements has also been attempted. The limitations of the simplified model have been brought out. The results of the finite element model using the cyclic symmetric approach have been discussed.


Sign in / Sign up

Export Citation Format

Share Document