The Simulation Study of Turbulence Models for Conjugate Heat Transfer Analysis of a High Pressure Air-Cooled Gas Turbine

Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongfei Tang ◽  
Hongyan Huang ◽  
Wanjin Han

The different turbulence models are adopted to simulate NASA-MarkII high pressure air-cooled gas turbine. The experimental work condition is Run 5411. The paper researches that the effect of different turbulence models for the flow and heat transfer characteristics of turbine. The turbulence models include: the laminar turbulence model, high Reynolds number k-ε turbulence model, low Reynolds number turbulence model (k-ω standard format, k-ω-SST and k-ω-SST-γ-θ) and B-L algebra turbulence model which is adopted by the compiled code. The results show that the different turbulence models can give good flow characteristics results of turbine, but the heat transfer characteristics results are different. Comparing to the experimental results, k-ω-SST-θ-γ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature is higher. The results of B-L algebra turbulence model show that the results of B-L model are accurate besides it has 4% temperature error in the transition region. As to the other turbulence models, the results show that all turbulence models can simulate the temperature distribution on the blade pressure surface except the laminar turbulence model underestimates the heat transfer coefficient of turbulence flow region. On the blade suction surface with transition flow characteristics, high Reynolds number k-ε turbulence model overestimates the heat transfer coefficient and causes the blade surface temperature is high about 90K than the experimental result. Low Reynolds number k-ω standard format and k-ω-SST turbulence models also overestimate the blade surface temperature value. So it can draw a conclusion that the unreasonable choice of turbulence models can cause biggish errors for conjugate heat transfer problem of turbine. The combination of k-ω-SST-γ-θ model and B-L algebra model can get more accurate turbine thermal environment results. In addition, in order to obtain the affect of different turbulence models for gas turbine conjugate heat transfer problem. The different turbulence models are adopted to simulate the different computation mesh domains (First case and Second case). As to each cooling passages, the first case gives the wall heat transfer coefficient of each cooling passages and the second case considers the conjugate heat transfer course between the cooling passages and blade. It can draw a conclusion that the application of heat transfer coefficient on the wall of each cooling passages avoids the accumulative error. So, for the turbine vane geometry models with complex cooling passages or holes, the choice of turbulence models and the analysis of different mesh domains are important. At last, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine.

Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Lorenzo Mazzei

Jet array is an arrangement typically used to cool several gas turbine parts. Some examples of such applications can be found in the impingement cooled region of gas turbine airfoils or in the turbine blade tip clearances control of large aero-engines. In the open literature, several contributions focus on the impingement jets formation and deal with the heat transfer phenomena that take place on the impingement target surface. However, deficiencies of general studies emerge when the internal convective cooling of the impinging system feeding channels is concerned. In this work, an aerothermal analysis of jet arrays for active clearance control (ACC) was performed; the aim was the definition of a correlation for the internal (i.e., within the feeding channel) convective heat transfer coefficient augmentation due to the coolant extraction operated by the bleeding holes. The data were taken from a set of computational fluid-dynamics (CFD) Reynolds-averaged Navier–Stokes (RANS) simulations, in which the behavior of the cooling system was investigated over a wide range of fluid-dynamics conditions. More in detail, several different holes arrangements were investigated with the aim of evaluating the influence of the hole spacing on the heat transfer coefficient distribution. Tests were conducted by varying the feeding channel Reynolds number in a wide range of real engine operative conditions. An in depth analysis of the numerical data set has underlined the opportunity of an efficient reduction through the local suction ratio (SR) of hole and feeding pipe, local Reynolds number, and manifold porosity: the dependence of the heat transfer coefficient enhancement factor (EF) from these parameter is roughly exponential.


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Lorenzo Mazzei

Jet array is an arrangement typically used to cool several gas turbine parts. Some examples of such applications can be found in the impingement cooled region of gas turbine airfoils or in the turbine blade tip clearances control of large aero-engines. In the open literature, several contributions focus on the impingement jets formation and deals with the heat transfer phenomena that take place on the impingement target surface. However, deficiencies of general studies emerges when the internal convective cooling of the impinging system feeding channels is concerned. In this work an aero-thermal analysis of jet arrays for active clearance control was performed; the aim was the definition of a correlation for the internal (i.e. within the feeding channel) convective heat transfer coefficient augmentation due to the coolant extraction operated by the bleeding holes. The data were taken from a set of CFD RANS simulations, in which the behaviour of the cooling system was investigated over a wide range of fluid-dynamics conditions. More in detail, several different holes arrangements were investigated with the aim of evaluating the influence of the hole spacing on the heat transfer coefficient distribution. Tests were conducted by varying the feeding channel Reynolds number in a wide range of real engine operative conditions. An in depth analysis of the numerical data set has underlined the opportunity of an efficient reduction through the local suction ratio of hole and feeding pipe, local Reynolds number and manifold porosity: the dependence of the heat transfer coefficient enhancement factor from these parameter is roughly exponential.


Author(s):  
Vijay K. Garg ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely the VKI rotor with six rows of cooling holes including three rows on the shower head, and the C3X vane with nine rows of holes including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence models, specifically, Coakley’s q-ω model, Chien’s k-ε model and Wilcox’s k-ω model with Menter’s modifications, have been compared with the experimental data of Camci and Arts (1990) for the VKI rotor, and of Hylton et al. (1988) for the C3X vane along with predictions using the Baldwin-Lomax (B-L) model taken from Garg and Gaugler (1995). It is found that for the cases considered here the two-equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooling holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-ω and k-ε models need 40% more computer time than the B-L model, the k-ω model requires at least 65% more time due to slower rate of convergence. It is found that the heat transfer coefficient exhibits a strong spanwise as well as streamwise variation for both blades and all turbulence models.


Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongyan Huang ◽  
Wanjin Han

The ANSYS-CFX software is used to simulate NASA-Mark II high pressure air-cooled gas turbine. The work condition is Run 5411 which have transition flow characteristics. The different turbulence models are adopted to solve conjugate heat transfer problem of this three-dimensional turbine blade. Comparing to the experimental results, k-ω-SST-γ-θ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature of suction side is higher. In this paper, the compiled code adopts the B-L algebra model and simulates the same computation model. The results show that the results of B-L model are accurate besides it has 4% temperature error in the suction side transition region. In addition, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine. ANSYS is applied to analysis the thermal stress of Mark II blade which has ten radial cooled passages and the results of Von Mises stress show that the temperature gradient results have a great effect on the results of blade thermal stress.


Author(s):  
Gm S. Azad ◽  
Je-Chin Han ◽  
Robert J. Boyle

Experimental investigations are performed to measure the detailed heat transfer coefficient and static pressure distributions on the squealer tip of a gas turbine blade in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a modern first stage gas turbine rotor blade with a blade tip profile of a GE-E3 aircraft gas turbine engine rotor blade. A squealer (recessed) tip with a 3.77% recess is considered here. The data on the squealer tip are also compared with a flat tip case. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Two different turbulence intensities of 6.1% and 9.7% at the cascade inlet are also considered for heat transfer measurements. Static pressure measurements are made in the mid-span and near-tip regions, as well as on the shroud surface opposite to the blade tip surface. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and an exit Reynolds number based on the axial chord of 1.1×106. A transient liquid crystal technique is used to measure the heat transfer coefficients. Results show that the heat transfer coefficient on the cavity surface and rim increases with an increase in tip clearance. The heat transfer coefficient on the rim is higher than the cavity surface. The cavity surface has a higher heat transfer coefficient near the leading edge region than the trailing edge region. The heat transfer coefficient on the pressure side rim and trailing edge region is higher at a higher turbulence intensity level of 9.7% over 6.1% case. However, no significant difference in local heat transfer coefficient is observed inside the cavity and the suction side rim for the two turbulence intensities. The squealer tip blade provides a lower overall heat transfer coefficient when compared to the flat tip blade.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Chunkyraj Khangembam ◽  
Dushyant Singh

Experimental investigation on heat transfer mechanism of air–water mist jet impingement cooling on a heated cylinder is presented. The target cylinder was electrically heated and was maintained under the boiling temperature of water. Parametric studies were carried out for four different values of mist loading fractions, Reynolds numbers, and nozzle-to-surface spacings. Reynolds number, Rehyd, defined based on the hydraulic diameter, was varied from 8820 to 17,106; mist loading fraction, f ranges from 0.25% to 1.0%; and nozzle-to-surface spacing, H/d was varied from 30 to 60. The increment in the heat transfer coefficient with respect to air-jet impingement is presented along with variation in the heat transfer coefficient along the axial and circumferential direction. It is observed that the increase in mist loading greatly increases the heat transfer rate. Increment in the heat transfer coefficient at the stagnation point is found to be 185%, 234%, 272%, and 312% for mist loading fraction 0.25%, 0.50%, 0.75%, and 1.0%, respectively. Experimental study shows identical increment in stagnation point heat transfer coefficient with increasing Reynolds number, with lowest Reynolds number yielding highest increment. Stagnation point heat transfer coefficient increased 263%, 259%, 241%, and 241% as compared to air-jet impingement for Reynolds number 8820, 11,493, 14,166, and 17,106, respectively. The increment in the heat transfer coefficient is observed with a decrease in nozzle-to-surface spacing. Stagnation point heat transfer coefficient increased 282%, 248%, 239%, and 232% as compared to air-jet impingement for nozzle-to-surface spacing of 30, 40, 50, and 60, respectively, is obtained from the experimental analysis. Based on the experimental results, a correlation for stagnation point heat transfer coefficient increment is also proposed.


2020 ◽  
Vol 307 ◽  
pp. 01038
Author(s):  
Mohammed Zohud ◽  
Ahmed Ouadha ◽  
Redouane Benzeguir

The present paper aims to numerically investigate the flow, heat transfer and entropy generation of some hydrocarbon based nanorefrigerants flowing in a circular tube subject to constant heat flux boundary condition. Numerical tests have been performed for 4 types of nanoparticles, namely Al2O3, CuO, SiO2, and ZnO with a diameter equal to 30 nm and a volume concentration of φ = 5%. These nanoparticles are dispersed in some hydrocarbon-based refrigerants, namely tetrafluoroethane (R134a), propane (R290), butane (R600), isobutane (R600a) and propylene (R1270). Computations have been performed for Reynolds number ranging from 600 to 2200. The numerical results in terms of the average heat transfer coefficient of pure refrigerants have been compared to values obtained using correlations from the literature. The results show that the increase of the Reynolds number increases the heat transfer coefficient and decreases the total entropy generation.


2017 ◽  
Vol 17 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Guocheng Zhu ◽  
Dana Kremenakova ◽  
Yan Wang ◽  
Jiri Militky ◽  
Rajesh Mishra ◽  
...  

AbstractThe air flow and conjugate heat transfer through the fabric was investigated numerically. The objective of this paper is to study the thermal insulation of fabrics under heat convection or the heat loss of human body under different conditions (fabric structure and contact conditions between the human skin and the fabric). The numerical simulations were performed in laminar flow regime at constant skin temperature (310 K) and constant air flow temperature (273 K) at a speed of 5 m/s. Some important parameters such as heat flux through the fabrics, heat transfer coefficient, and Nusselt number were evaluated. The results showed that the heat loss from human body (the heat transfer coefficient) was smallest or the thermal insulation of fabric was highest when the fabric had no pores and no contact with the human skin, the heat loss from human body (the heat transfer coefficient) was highest when the fabric had pores and the air flow penetrated through the fabric.


Author(s):  
Y. Koizumi ◽  
T. Okuyama ◽  
H. Ohtake

Heat transfer and flow behavior in the mini tube bank were examined. The tube bank was composed of 1 mm diameter nickel wires and a 30 mm wide × 15 mm high flow channel. Experiments were performed in the range of the rod Re = 5 ~ 430 by using water. Numerical analyses were also conducted with the commercial CFD code STAR-CD. The heat transfer coefficient after the second row was lower than first row's one. The flow visualization results indicated that the wake region was stagnant when the Reynolds number was low. This flow stagnation seemed to cause the heat transfer coefficient deterioration in the tube bank. As the Reynolds number was increased, the flow state in the wake region gradually changed from the stagnant condition to the more disturbed condition. The deeper the row was, the more disturbed the wake was. The heat transfer coefficient began to recover to the first row value at certain Reynolds number. The recovery started from the most downstream row; fifth row in the present experiments and was propagated to the upstream row. The Reynolds number when the recovery was initiated decreased as the spacing between rods was increased. The analytical results of the STAR-CD code supported the experimental results. When the wake was stagnant, the heat transfer coefficient distribution around the rear rod, i.e. the rod in the wake, showed a large dip in the front region of the rod. It was considered that this dip caused the heat transfer coefficient decrease after the second row observed in the experiments.


Sign in / Sign up

Export Citation Format

Share Document