Using Quantum Dots for Liquid-Phase Thermometry at Near-Infrared Wavelengths in Silicon Devices

Author(s):  
Myeongsub Kim ◽  
Minami Yoda

The need for new thermal management technologies to cool electronic components with their ever-increasing density and power requirements has renewed interest in techniques for measuring liquid-phase coolant temperatures, especially nonintrusive techniques with micron-scale spatial resolution. A variety of optical liquid-phase thermometry techniques exploit the changes in the emission characteristics of fluorescent, phosphorescent or luminescent tracers suspended in a liquid-phase coolant. Such techniques are nonintrusive and have micron-scale spatial resolution, but they also require optical access to both excite and image the emissions. Silicon (Si), the leading material for electronic devices, is opaque at visible wavelengths, but is partially transparent in the near-infrared (IR). To date, the only tracers that emit at near-IR wavelengths with reasonable quantum yield are IR quantum dots (IRQD), colloidal nanocrystals of semiconductor materials such as lead sulfide (PbS). Previous work has shown that the intensity of emissions at 1.55 μm from PbS IRQD suspended in toluene are temperature-sensitive, decreasing by as much as 15% as the temperature increased from 20 °C to 60 °C. The accuracy of temperature measurements using PbS IRQD was estimated to be about 5 °C, based on 95% confidence intervals, where the major limit on the accuracy of the technique was the poor photostability of this material [1]. Recently, a new method for creating a cadmium sulfide (CdS) overcoat layer on PbS “cores” has been developed [2]. The experimental results presented here on the temperature sensitivity of these PbS/CdS core-shell infrared quantum dots with an emission peak around 1.35 μm and a diameter of 5.7 nm (with a core diameter of 4 nm) suggest that these new core-shell structures are more temperature-sensitive than the PbS cores. These core-shell quantum dots, when suspended in toluene, were found to have a 0.5% decrease in emission power per °C increase in temperature at suspension temperatures ranging from 20 °C to 60 °C. The uncertainty in the liquid-phase temperatures derived from these emissions was estimated to be less than 0.3 °C based on the standard deviation. Furthermore, the PbS/CdS quantum dots were highly photostable, with a consistent response more than 100 days after suspension. These results imply that that these new IRQD can be used to measure liquid-phase coolant temperatures without disturbing the flow of coolant at an accuracy comparable to commercially available thermocouples in monolithic Si devices.

2008 ◽  
Author(s):  
Myeongsub Kim ◽  
Minami Yoda

The exponential growth in the component density of integrated circuits has created huge thermal management challenges for next-generation microelectronics, with projected local heat fluxes approaching 1 kW/cm2 within five years. There is thus an urgent need to develop compact, high heat flux cooling methodologies. Developing and evaluating effective microelectronic single-phase liquid cooling systems, however, also requires measuring liquid-phase and wall surface temperatures to determine the local convective heat transfer coefficient in complex piping systems with dimensions comparable to the diameter of a human hair. Yet there are few if any practical thermometry techniques that can measure temperatures in such small geometries without disturbing the coolant flow and hence affecting cooling performance. Most optically based non-intrusive liquid-thermometry techniques exploit the temperature-sensitive spectral characteristics such as emission intensity and lifetime of the photoluminescence from various tracers at visible wavelengths. Applying such techniques to measure temperatures in silicon (Si) devices, however, has been hampered by a lack of suitable temperature indicators because Si is opaque at visible wavelengths. Silicon is, however, partially transparent in the near-infrared (IR), with absorption coefficients as high as 15 cm−1 at wavelengths of 1.2–1.6 μm. We have therefore investigated the temperature sensitivity of the photoluminescent emission from oleate-capped lead sulfide (PbS) quantum dots (QD) suspended in toluene that emit at a wavelength of 1.55 μm. These QD are found to have an emission intensity that decreases by as much as 0.5% per K for temperatures ranging from 293 K to 333 K. Results are presented for temperature measurements through Si surfaces using PbS QD. The accuracy and reproducibility of these temperature measurements are discussed.


2009 ◽  
Vol 48 (20) ◽  
pp. 9723-9731 ◽  
Author(s):  
Wenjin Zhang ◽  
Guanjiao Chen ◽  
Jian Wang ◽  
Bang-Ce Ye ◽  
Xinhua Zhong

Small ◽  
2020 ◽  
Vol 16 (14) ◽  
pp. 2001003 ◽  
Author(s):  
Yejun Zhang ◽  
Hongchao Yang ◽  
Xinyi An ◽  
Zan Wang ◽  
Xiaohu Yang ◽  
...  

2010 ◽  
Vol 46 (17) ◽  
pp. 2974 ◽  
Author(s):  
Guo-Xi Liang ◽  
Ling-Ling Li ◽  
Hong-Yin Liu ◽  
Jian-Rong Zhang ◽  
Clemens Burda ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (77) ◽  
pp. 41164-41171 ◽  
Author(s):  
Yoshikazu Tsukasaki ◽  
Masatoshi Morimatsu ◽  
Goro Nishimura ◽  
Takao Sakata ◽  
Hidehiro Yasuda ◽  
...  

This paper describes the synthesis and optical properties of PbS/CdS quantum dots for in vivo fluorescence imaging.


2019 ◽  
Vol 86 (3) ◽  
pp. 30401 ◽  
Author(s):  
Hilmi Ünlü

A thermoelastic model is proposed to determine elastic strain effects on electronic properties of spherical Type I and Type II heterostructure core/shell quantum dots (QDs) as a function of dimensions of constituent semiconductors at any temperature. Proposed model takes into account the difference between lattice constants, linear expansion coefficients and anisotropy of elastic moduli (Young's modulus and Poisson's ratio) of constituent semiconductors, respectively. In analogous to lattice mismatch, we introduce so called the elastic anisotropy mismatch in heterostructures. Compressive strain acting on core (shell) side of heterointerfaces in CdSe/CdS, CdSe/ZnS, and ZnSe/ZnS QDs increases (decreases) as shell diameter is increased, which causes increase (decrease) in core bandgap as sell (core) diameter is increased in these nanostructures. Furthermore, there is a parabolic increase in conduction band offsets and core bandgaps in CdSe/CdS, CdSe/ZnS, and ZnSe/ZnS QDs and decrease in conduction band offset and core bandgap of ZnSe/CdS QD as core (shell) diameter increases for fixed shell (core) diameter. Comparison shows that using isotropic elastic moduli in determining band offsets and core band gaps gives better agreement with experiment than anisotropic elastic moduli for core bandgaps of CdSe/CdS, CdSe/ZnS, ZnSe/ZnS, and ZnSe/CdS core/shell QDs. Furthermore, we also show that the strain-modified two band effective mass approximation can be used to determine band offsets by using measured core band gaps in core/shell heterostructure QDs with Type II interface band alignment. Excellent agreement between predicted and measured core bandgaps in CdSe and ZnSe based core/shell QDs suggests that proposed model can be a good design tool for process simulation of core/shell heterostructure QDs.


Sign in / Sign up

Export Citation Format

Share Document