Utilization of Low Temperature Waste Heat for Cold TES

Author(s):  
James J. Rizza

This paper presents an advanced energy cogeneration system that utilizes low temperature waste heat in the range of 60°C to 95°C to produce cold thermal energy storage (TES). Since there is usually a temporal variance between the availability of low temperature waste heat and demand for commercial building air conditioning, a cold TES system is incorporated into this advance energy system. The proposed TES system uses a lithium bromide/water solution both as a refrigerant and as a cold thermal storage material. The cold storage material can be stored at ambient temperature without thermal insulation for an indefinite period of time without losing its charge, making it an ideal system for utilizing peaking system’s low temperature waste heat or to utilize low temperature waste heat during nocturnal operation of continuous generation systems at a time when there are usually low or minimal air conditioning requirements. The heat pump and waste heat is used to recover the thermal storage by reprocessing the stored lithium bromide weak solution to a higher concentration.

2020 ◽  
Vol 168 ◽  
pp. 00046
Author(s):  
Georgii Karman ◽  
Yurii Oksen ◽  
Olena Trofymova ◽  
Yurii Komissarov ◽  
Borys Dizhevskyi ◽  
...  

A possibility of gas engine waste heat conversion into cold for air conditioning in mines using lithium bromide absorption chillers is investigated. Dependencies of parameters of a thermodynamic cycle and energy indicators of chillers on temperatures of a heating medium and a coolant are obtained using mathematical modelling. It is shown that it is rational to use two chillers with sequential movement of a heating medium and a coolant through them in opposite directions for a full conversion of gas engine waste heat. COP of such a system is 0.733. This allows obtaining 2140 kW of cooling capacity with a coolant temperature of 7 °C when using a gas engine JMS-620 by Jenbacher.


2014 ◽  
Vol 6 ◽  
pp. 735042
Author(s):  
Ya-Wei Lee

This study presents electromagnetic-controlled thermal storage (ECTS) that can be directly implemented in strategies of low-temperature waste heat recovery for energy-consuming equipment. A magnetic nanofluid (MNF) prepared from fine iron ferrite ferromagnetic particles is recommended as a latent heat medium (LHM). During electromagnetic induction, local flow fluctuations are generated and thermal convection in the MNF can be enhanced. The achieved results demonstrated that ECTS has a wide operational range and an optimum storage efficiency of 84.46%. Thus, a self-perturbation mode used to enhance thermal energy transportation can be designed for numerous waste heat management applications.


1998 ◽  
Vol 120 (1) ◽  
pp. 25-31 ◽  
Author(s):  
J. J. Rizza

An analysis of a low-temperature thermal storage system using an ammonia-water solution both as a refrigerant and as a low-temperature thermal storage material is considered. The thermal storage is useable at a temperature of −27°C and higher. The proposed system is designed to shift electric demand from high to low-demand periods. The system utilizes a heat-operated absorption refrigeration system; however, the generator heat is supplied by a self-contained vapor compression heat pump. The heat pump is operated during the off-peak period to recover the low-temperature thermal storage by reprocessing the stored ammonia-water solution to a lower ammonia-water concentration. The ammonia vapor liberated from solution in the dephlegmator is used in the compressor to produce the generator heat. Three different configurations are considered, including a solar-assisted system. The results are compared to an eutectic salt storage system.


Author(s):  
L. H. Alva Solari ◽  
J. E. González

Abstract This paper investigates the technical feasibility of using a compact, air-cooled, solar-assisted, absorption air conditioning system in Puerto Rico and similar regions. Computer simulations were conducted to evaluate the system’s performance when subjected to dynamic cooling loads. Within the computer model, heat and mass balances are conducted on each component of the system, including the solar collectors, thermal storage tank, the air-cooled condenser, and the air-cooled absorber. Guidance on component design and insight into the effects of such operating factors as ambient air temperature were gained from exercising the simulation model. Comparisons are made with an absorption air conditioning system that uses a cooling tower instead of air-cooled components. The particular absorption system of study is one that uses lithium bromide and water as the absorbent and refrigerant, respectively. The heat input to the absorption system generator is provided by an array of flat plate collectors that are coupled to a thermal storage tank. Systems having nominal cooling capacities of 10.5, 14, and 17.5 kW were considered. Useful information about the number of collectors needed, storage tank volume and efficiency of the overall system is presented.


2017 ◽  
Vol 14 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Lingling Bao ◽  
Jiaying Wang ◽  
Jinggang Wang ◽  
Zheng Yu

Purpose Currently, China is the largest coal producer and consumer in the world. Underground mining is the main practice. In the process of deep mining, large amounts of low-temperature waste heat are available such as in the mine return air (MRA), mine water (MW), bathing waste water (BWW), etc. Without recycling, the low-temperature waste heat is discharged directly into the atmosphere or into the drainage system. The temperature range of the MRA is about 15-25°C, the relative humidity (RH) of the MRA is above 90 per cent, the temperature range of MW is about 18-20°C and the temperature of the BWW is about 30°C. All of the above parameters are relatively stable throughout the year, and thus MRA, MW and BWW are proper low-temperature heat sources for water source heat pump (WSHP) systems. The study aims to introduce the schemes for recycling the different waste heat sources and the relevant key equipment and technology of each waste heat recycle system; analyze the heat recovery performances of the MRA heat recovery technology; and compare the economies between the MRA heat recovery system and the traditional system. Design/methodology/approach Based on the WSHP system, heat and mass transfer efficiencies were calculated and analyzed, the outlet air velocity diffusion of the heat and mass transfer units and the parameters including air flow rate, the MRA’s dry bulb temperatures and wet bulb temperatures at inlet and outlet of MRA heat exchanger were tested. Then, it was assessed whether this system can be applied to an actual construction. An actual reconstructive project of MRA heat recovery system is taken as an example, where the cost-saving effects of heat recovery of mine waste heat sources system are analyzed. Findings Analysis of field test reveals that when heat transfer is stable, heat transfer capacity can be achieved: 957.6 kW in summer, 681 kW in winter and a large amount of heat was recycled. In an economic analysis, by comparing initial investment and 10 years’ operation cost with the traditional boiler and central air conditioning system, the results show that although the MRA system’s initial investment is high, this system can save CNY 6.26m in 10 years. Originality/value MRA has a large amount of air volume and temperature that is constant throughout the year, and hence is a good low-temperature heat source for the WSHP system. It can replace boiler heating in winter and central air conditioning refrigeration in summer. The study reveals that this technology is feasible, and has good prospects for development.


Sign in / Sign up

Export Citation Format

Share Document