scholarly journals Performance Assessment of Low-Temperature Thermal Storage with Electromagnetic Control

2014 ◽  
Vol 6 ◽  
pp. 735042
Author(s):  
Ya-Wei Lee

This study presents electromagnetic-controlled thermal storage (ECTS) that can be directly implemented in strategies of low-temperature waste heat recovery for energy-consuming equipment. A magnetic nanofluid (MNF) prepared from fine iron ferrite ferromagnetic particles is recommended as a latent heat medium (LHM). During electromagnetic induction, local flow fluctuations are generated and thermal convection in the MNF can be enhanced. The achieved results demonstrated that ECTS has a wide operational range and an optimum storage efficiency of 84.46%. Thus, a self-perturbation mode used to enhance thermal energy transportation can be designed for numerous waste heat management applications.

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3269 ◽  
Author(s):  
Zhongbao Liu ◽  
Fengfei Lou ◽  
Xin Qi ◽  
Yiyao Shen

Air source heat pumps (ASHPs) are widely recognized as energy-saving and environmentally friendly heating and air-conditioning equipment with broad applications. However, when conventional ASHPs are operated at a low ambient temperature, they suffer from problems such as high discharge temperature and low heating efficiency. To address these problems, this study designed a new type of dual evaporator combined with a compressor casing thermal storage heat pump system (DE-CCTS) on the basis of a low-temperature air source heat pump water heater with enhanced vapor injection (EVI). The proposed DE-CCTS used thermal storage phase change material (PCM), which was filled in the secondary evaporator (the thermal storage heat exchanger), to recover the waste heat of the compressor casing. Unlike that in the original system under different ambient temperatures, the suction temperature increased by 0.1–1 °C, the discharge temperature decreased by 0.1–0.5 °C, and the coefficient of performance (COP) of DE-CCTS increased by 0.85–4.72% under the proposed system. These effects were especially evident at low temperatures.


Author(s):  
James J. Rizza

This paper presents an advanced energy cogeneration system that utilizes low temperature waste heat in the range of 60°C to 95°C to produce cold thermal energy storage (TES). Since there is usually a temporal variance between the availability of low temperature waste heat and demand for commercial building air conditioning, a cold TES system is incorporated into this advance energy system. The proposed TES system uses a lithium bromide/water solution both as a refrigerant and as a cold thermal storage material. The cold storage material can be stored at ambient temperature without thermal insulation for an indefinite period of time without losing its charge, making it an ideal system for utilizing peaking system’s low temperature waste heat or to utilize low temperature waste heat during nocturnal operation of continuous generation systems at a time when there are usually low or minimal air conditioning requirements. The heat pump and waste heat is used to recover the thermal storage by reprocessing the stored lithium bromide weak solution to a higher concentration.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 954 ◽  
Author(s):  
Hanne Kauko ◽  
Daniel Rohde ◽  
Armin Hafner

District heating enables an economical use of energy sources that would otherwise be wasted to cover the heating demands of buildings in urban areas. For efficient utilization of local waste heat and renewable heat sources, low distribution temperatures are of crucial importance. This study evaluates a local heating network being planned for a new building area in Trondheim, Norway, with waste heat available from a nearby ice skating rink. Two alternative supply temperature levels have been evaluated with dynamic simulations: low temperature (40 °C), with direct utilization of waste heat and decentralized domestic hot water (DHW) production using heat pumps; and medium temperature (70 °C), applying a centralized heat pump to lift the temperature of the waste heat. The local network will be connected to the primary district heating network to cover the remaining heat demand. The simulation results show that with a medium temperature supply, the peak power demand is up to three times higher than with a low temperature supply. This results from the fact that the centralized heat pump lifts the temperature for the entire network, including space and DHW heating demands. With a low temperature supply, heat pumps are applied only for DHW production, which enables a low and even electricity demand. On the other hand, with a low temperature supply, the district heating demand is high in the wintertime, in particular if the waste heat temperature is low. The choice of a suitable supply temperature level for a local heating network is hence strongly dependent on the temperature of the available waste heat, but also on the costs and emissions related to the production of district heating and electricity in the different seasons.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 25
Author(s):  
Antonio Garrido Marijuan ◽  
Roberto Garay ◽  
Mikel Lumbreras ◽  
Víctor Sánchez ◽  
Olga Macias ◽  
...  

District heating networks deliver around 13% of the heating energy in the EU, being considered as a key element of the progressive decarbonization of Europe. The H2020 REnewable Low TEmperature District project (RELaTED) seeks to contribute to the energy decarbonization of these infrastructures through the development and demonstration of the following concepts: reduction in network temperature down to 50 °C, integration of renewable energies and waste heat sources with a novel substation concept, and improvement on building-integrated solar thermal systems. The coupling of renewable thermal sources with ultra-low temperature district heating (DH) allows for a bidirectional energy flow, using the DH as both thermal storage in periods of production surplus and a back-up heating source during consumption peaks. The ultra-low temperature enables the integration of a wide range of energy sources such as waste heat from industry. Furthermore, RELaTED also develops concepts concerning district heating-connected reversible heat pump systems that allow to reach adequate thermal levels for domestic hot water as well as the use of the network for district cooling with high performance. These developments will be demonstrated in four locations: Estonia, Serbia, Denmark, and Spain.


2021 ◽  
Vol 13 (9) ◽  
pp. 5223
Author(s):  
Miriam Benedetti ◽  
Daniele Dadi ◽  
Lorena Giordano ◽  
Vito Introna ◽  
Pasquale Eduardo Lapenna ◽  
...  

The recovery of waste heat is a fundamental means of achieving the ambitious medium- and long-term targets set by European and international directives. Despite the large availability of waste heat, especially at low temperatures (<250 °C), the implementation rate of heat recovery interventions is still low, mainly due to non-technical barriers. To overcome this limitation, this work aims to develop two distinct databases containing waste heat recovery case studies and technologies as a novel tool to enhance knowledge transfer in the industrial sector. Through an in-depth analysis of the scientific literature, the two databases’ structures were developed, defining fields and information to collect, and then a preliminary population was performed. Both databases were validated by interacting with companies which operate in the heat recovery technology market and which are possible users of the tools. Those proposed are the first example in the literature of databases completely focused on low-temperature waste heat recovery in the industrial sector and able to provide detailed information on heat exchange and the technologies used. The tools proposed are two key elements in supporting companies in all the phases of a heat recovery intervention: from identifying waste heat to choosing the best technology to be adopted.


MRS Advances ◽  
2020 ◽  
Vol 5 (10) ◽  
pp. 481-487 ◽  
Author(s):  
Norifusa Satoh ◽  
Masaji Otsuka ◽  
Yasuaki Sakurai ◽  
Takeshi Asami ◽  
Yoshitsugu Goto ◽  
...  

ABSTRACTWe examined a working hypothesis of sticky thermoelectric (TE) materials, which is inversely designed to mass-produce flexible TE sheets with lamination or roll-to-roll processes without electric conductive adhesives. Herein, we prepared p-type and n-type sticky TE materials via mixing antimony and bismuth powders with low-volatilizable organic solvents to achieve a low thermal conductivity. Since the sticky TE materials are additionally injected into punched polymer sheets to contact with the upper and bottom electrodes in the fabrication process, the sticky TE modules of ca. 2.4 mm in thickness maintained temperature differences of ca. 10°C and 40°C on a hot plate of 40 °C and 120°C under a natural-air cooling condition with a fin. In the single-cell resistance analysis, we found that 75∼150-µm bismuth powder shows lower resistance than the smaller-sized one due to the fewer number of particle-particle interfaces in the electric pass between the upper and bottom electrodes. After adjusting the printed wiring pattern for the upper and bottom electrodes, we achieved 42 mV on a hot plate (120°C) with the 6 x 6 module having 212 Ω in the total resistance. In addition to the possibility of mass production at a reasonable cost, the sticky TE materials provide a low thermal conductivity for flexible TE modules to capture low-temperature waste heat under natural-air cooling conditions with fins for the purpose of energy harvesting.


Sign in / Sign up

Export Citation Format

Share Document