An Experimental and Numerical Investigation of Flow Regimes in Narrow Gaps

Author(s):  
D. Deng ◽  
M. J. Braun

A comparison between the experimental and numerical results of the torque-speed graph is presented. There is a good agreement between the numerical and experimental data in the Couette, Taylor and Pre-wavy regimes. In the wavy regime, the numerical data are larger than the corresponding measured torques but the difference is confined to below 14%. The calculated critical speeds for the onset of Taylor vortex and Pre-wavy flows are slightly larger than the experimentally measured ones. Flow patterns in the longitudinal cross section view of the fluid between two cylinders are also presented. Experimental results show that Taylor vortex flow is replaced by a new equilibrium flow, which is defined as Pre-wavy flow. The major characteristic of the Pre-wavy flow is the appearance of zones of particle accumulation in the areas near the inner cylinder. These zones correspond to the low pressure regions. Except for the flow patterns in the Pre-wavy regime there is good agreement between the numerical simulation and the experimental results.

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Charlton Campbell ◽  
Michael G. Olsen ◽  
R. Dennis Vigil

Optical-based experiments were carried out using the immiscible pair of liquids hexane and water in a vertically oriented Taylor–Couette reactor operated in a semibatch mode. The dispersed droplet phase (hexane) was continually fed and removed from the reactor in a closed loop setup. The continuous water phase did not enter or exit the annular gap. Four distinct flow patterns were observed including (1) a pseudo-homogenous dispersion, (2) a weakly banded regime, (3) a horizontally banded dispersion, and (4) a helical flow regime. These flow patterns can be organized into a two-dimensional regime map using the azimuthal and axial Reynolds numbers as axes. In addition, the dispersed phase holdup was found to increase monotonically with both the azimuthal and axial Reynolds numbers. The experimental observations can be explained in the context of a competition between the buoyancy-driven axial flow of hexane droplets and the wall-driven vortex flow of the continuous water phase.


Author(s):  
H. Furukawa ◽  
M. Hanaki ◽  
T. Watanabe

In concentrically rotating double cylinders consisting of a stationary outer cylinder and a rotating inner cylinder, Taylor vortex flow appears. Taylor vortex flow occurs in journal bearings, various fluid machineries, containers for chemical reaction, and other rotating components. Therefore, the analysis of the flow structure of Taylor vortex flow is highly effective for its control. The main parameters that determine the modes of Taylor vortex flow of a finite length are the aspect ratio Γ, Reynolds number Re. Γ is defined as the ratio of the cylinder length to the gap length between cylinders, and Re is determined on the basis of the angular speed of the inner cylinder. Γ was set to be 3.2, 4.8 and 6.8, and Re to be values in the range from 100 to 1000 at intervals of 100. Thus far, a large number of studies on Taylor vortex flow have been carried out; however, the effects of the differences in initial conditions have not yet been sufficiently clarified. In this study, we changed the initial flow field between the inner and outer cylinders in a numerical analysis, and examined the resulting changes in the mode formation and bifurcation processes. In this study, the initial speed distribution factor α was defined to be a function of the initial flow field and set to be 1.0, 0.999, 0.9 and 0.8 for the calculation. As a result, a difference was observed in the final mode depending on the difference in α for each Γ. From this finding, non-uniqueness, which is a major characteristic of Taylor vortex flow, was confirmed. However, no regularities regarding the difference in mode formation were found and the tendency of the mode formation process was not specified. Moreover, the processes of developing the vortex resulting in different final modes were monitored over time by visual observation. Similar flow behaviors were initially observed after the start of the calculation. Then, a bifurcation point, at which the flow changed to a mode depending on α, was observed, and finally the flow became steady. In addition, there was also a difference in the time taken for the flow to reach the steady state. These findings are based on only visual observation. Accordingly, a more detailed analysis at each lattice point and a comparison of physical quantities, such as kinetic energy and enstrophy, will be our future tasks.


1974 ◽  
Vol 96 (1) ◽  
pp. 28-35 ◽  
Author(s):  
R. C. DiPrima ◽  
J. T. Stuart

At sufficiently high operating speeds in lightly loaded journal bearings the basic laminar flow will be unstable. The instability leads to a new steady secondary motion of ring vortices around the cylinders with a regular periodicity in the axial direction and a strength that depends on the azimuthial position (Taylor vortices). Very recently published work on the basic flow and the stability of the basic flow between eccentric circular cylinders with the inner cylinder rotating is summarized so as to provide a unified description. A procedure for calculating the Taylor-vortex flow is developed, a comparison with observed properties of the flow field is made, and formulas for the load and torque are given.


2002 ◽  
Vol 35 (7) ◽  
pp. 692-695 ◽  
Author(s):  
Naoto Ohmura ◽  
Hirokazu Okamoto ◽  
Tsukasa Makino ◽  
Kunio Kataoka

1984 ◽  
Vol 138 ◽  
pp. 21-52 ◽  
Author(s):  
H. Fasel ◽  
O. Booz

For a wide gap (R1/R2= 0.5) and large aspect ratiosL/d, axisymmetric Taylor-vortex flow has been observed in experiments up to very high supercritical Taylor (or Reynolds) numbers. This axisymmetric Taylor-vortex flow was investigated numerically by solving the Navier–Stokes equations using a very accurate (fourth-order in space) implicit finite-difference method. The high-order accuracy of the numerical method, in combination with large numbers of grid points used in the calculations, yielded accurate and reliable results for large supercritical Taylor numbers of up to 100Tac(or 10Rec). Prior to this study numerical solutions were reported up to only 16Tac. The emphasis of the present paper is placed upon displaying and elaborating the details of the flow field for large supercritical Taylor numbers. The flow field undergoes drastic changes as the Taylor number is increased from just supercritical to 100Tac. Spectral analysis (with respect toz) of the flow variables indicates that the number of harmonics contributing substantially to the total solution increases sharply when the Taylor number is raised. The number of relevant harmonics is already unexpectedly high at moderate supercriticalTa. For larger Taylor numbers, the evolution of a jetlike or shocklike flow structure can be observed. In the axial plane, boundary layers develop along the inner and outer cylinder walls while the flow in the core region of the Taylor cells behaves in an increasingly inviscid manner.


1993 ◽  
Vol 48 (1) ◽  
pp. 13-24
Author(s):  
J.F. Hasiuk ◽  
J.D. Iversen ◽  
R.H. Pletcher ◽  
R.G. Hindman

Author(s):  
G B McFadden ◽  
B T Murray ◽  
S R Coriell ◽  
M E Glicksman ◽  
M E Selleck

Sign in / Sign up

Export Citation Format

Share Document