Detailed Stress Analysis of a Spherical Acrylic Submersible by 3-D Finite Element Modeling

1999 ◽  
Author(s):  
Partha S. Das

Abstract Harbor Branch Oceanographic Institution (HBOI) designed, built and has operated two JOHNSON-SEA-LINK (JSL) manned submersibles for the past 25 years. The JSL submersibles each incorporate a 66–68 in. (1.6764–1.7272 m) OD, 4–5.25 in. (0.1016–0.13335 m) thick acrylic two-man sphere as a Pressure Vessel for Human Occupancy (PVHO). This type of spherical acrylic sphere or submersible was first introduced in around 1970 and is known as Naval Experimental Manned Observatory (NEMO) submersibles. As the demand increases for ocean exploration to 3000 ft. (914.4 m) depth to collect samples, to study the ocean surfaces, the problem of developing cracks at the interface of these manned acrylic submersibles following few hundred dives have become a common phenomena. This has drawn considerable attentions for reinvestigation of the spherical acrylic submersible in order to overcome this crack generation problem at the interface. Therefore, a new full-scale 3-D nonlinear FEA (Finite Element Analysis) model, similar to the spherical acrylic submersible that HBOI uses for ocean exploration, has been developed for the first time in order to simulate the structural behavior at the interface and throughout the sphere, for better understanding of the mechanical behavior. Variation of the stiffness between dissimilar materials at the interface, lower nylon gasket thickness, over designed aluminum hatch are seemed to be few of the causes for higher stresses within acrylic sphere at the nylon gasket/acrylic interface. Following the basic understanding of the stresses and relative displacements at the interface and within different parts of the submersible, various models have been developed on the basis of different shapes and thickness of nylon gaskets, openings of the acrylic sphere, hatch geometry and its materials, specifically to study their effect on the overall performance of the acrylic submersible. Finally, the new model for acrylic submersible has been developed by redesigning the top aluminum hatch and hatch ring, the sphere openings at both top and bottom, as well as the nylon gasket inserts. Altogether this new design indicates a significant improvement over the existing spherical acrylic submersible by reducing the stresses at the top gasket/acrylic interface considerably. Redesigning of the bottom penetrator plate, at present, is underway. In this paper, results from numerical modeling only are reported in details. Correlation between experimental-numerical modeling results for the new model will be reported in the near future.

2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


Author(s):  
Dinesh Shinde ◽  
Mukesh Bulsara ◽  
Jeet Patil

Brake friction lining material is the critical element of a braking system, since it provides friction resistance to the rotating drum for controlling automobiles. The present study involves wear analysis of newly developed eco-friendly non-asbestos friction lining material for automotive drum brake applications using experimental study, finite-element analysis, and microstructural investigations. Theoretical interpretation of braking force at different automobile speeds was derived using fundamentals. Specimen drum brake liner with eco-friendly material compositions was produced using an industrial hot compression molding process at one of the manufacturer. The surface wear of the liner was measured using an effective and accurate method. Furthermore, a finite-element analysis model was developed considering actual operating conditions and various components of the drum brake system. The model was elaborated for various result outcomes, including Von-Mises stresses and total deformation of components of the drum brake, and further used to estimate the surface wear of the friction lining material in terms of transverse directional deformation. Finally, microstructural analysis of the friction lining material was carried out using scanning electron microscopy and energy dispersive spectroscopy. From the results, it is seen that the developed friction lining material is wear resistant. The finite-element analysis model can be effectively utilized to study the tribological characteristics of friction lining materials.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097774
Author(s):  
Jiawei Wang ◽  
Fachao Li ◽  
Zibo Chen ◽  
Baishu Li ◽  
Jue Zhu

This paper studies the force and deformation of the connecting channel in Ningbo rail transit construction, which firstly used the mechanical shield method. Steel-concrete composite structural segments are used in the T-joint of connecting channel. The cutting part of the segments are replaced by the concrete and fiberglass instead of reinforced concrete. Basing on a variety of three-dimensional design software and ABAQUS finite element analysis software, a refined finite element analysis model of the special segments is established. By considering the influence of curved joint bolts, the force analysis of the special segments under the structural state before and after construction is performed. According to the analysis and comparison of the deformation of the segments with and without the bolts, it is concluded that the steel-concrete segments can withstand the pressure of the soil before and after the construction. Suggestions for the safety of the design and construction of the segments are put forward.


Spine ◽  
2020 ◽  
Vol 45 (16) ◽  
pp. E978-E988
Author(s):  
Deepak Gupta ◽  
Mohd Zubair ◽  
Sanjeev Lalwani ◽  
Shiva Gamanagatti ◽  
Tara Sankar Roy ◽  
...  

2013 ◽  
Vol 871 ◽  
pp. 347-351
Author(s):  
Dun Cai Lei ◽  
Jin Yuan Tang

A lecture on the method to compute the the stress of V-tooth coupling under the actual operating conditions. the finite element analysis model of V-tooth coupling under the preload, axial load and torsion was established by used of the software ABAQUS,and the distribution of the bending stress at the root was obtained. The analytical method to compute the bending stress of V-tooth disk is deduced based on the basic principle of material mechanics, and the relative error within 10% compared with the results of finite element analysis.The paper work provide the reference for the precision design of V-tooth coupling.


2011 ◽  
Vol 121-126 ◽  
pp. 4523-4527
Author(s):  
Yu Yan Liu ◽  
Yan Wang ◽  
Lin Chen ◽  
Ge Li ◽  
Jian Guo Wang

The paper established U75V 100-meter rail 3-D transient non-liner finite element analysis model about U75V 100-meter rail by using the large-scale non-liner finite element analysis software ABAQUS. By analyzing the different positions in the section of the temperature variation, the changes of bending degree and the residual stress variation after the bending deformation have changed. Based on the 100-meter straight rail in natural cooling under the cooling process, simulation results showed that in the cooling process, deflection change with time mainly divided into four stages; In consideration of the friction effect, the flat rail cold curve for its deformation among roughly flat, the curve about either ends, the scope for bending is 18 meters, the maximal displacement is 1.88 meters while the flat rail occured end colding.


2008 ◽  
Vol 457 (6) ◽  
pp. 1415-1422 ◽  
Author(s):  
Peter N. Ayittey ◽  
John S. Walker ◽  
Jeremy J. Rice ◽  
Pieter P. de Tombe

Sign in / Sign up

Export Citation Format

Share Document