Modeling of Tool Wear Acceleration in Relation to the Reinforcement Percentage in Cutting of Metal Matrix Composites

1999 ◽  
Author(s):  
Xiaoping Li ◽  
W. K. H. Seah

Abstract A comprehensive study of the tool wear mechanism in cutting of metal matrix composites (MMCs) and its dependence on the percentage of reinforcement in the MMCs is presented. The results from experimental cutting of Aluminium alloy-Silicon Carbide Metal Matrix Composite (Al-SiC MMC) with tungsten carbide tools show that the main mechanism of tool wear in cutting of Al-SiC MMC includes two-body abrasion and three-body abrasion. The abrasive wear of the tool is accelerated when the percentage of the reinforcement in the MMC exceeds a critical value. The wear acceleration is caused by the interference between the reinforcement particles. The interference is associated with a critical weight percentage of the reinforcement in the MMC. The critical weight percentage of reinforcement is a function of the densities of the reinforcement and the matrix as well as the size of the reinforcement particles and the radius of the tool cutting edge. It does not vary with cutting conditions. An analytical model for the critical reinforcement percentage of MMCs is developed and verified with experimental results. The model is used to develop a map showing the critical reinforcement percentages of MMCs varying with the size of the reinforcement particles and the radius of the tool cutting edge.

Author(s):  
C. Avinash ◽  
S. Ramaswamy ◽  
S. Raguraman ◽  
N. Muthukrishnan

The tool wear mechanism in machining of metal matrix composites (MMC) and its dependence on the percentage of reinforcements with MMC was investigated. Silicon carbide metal matrix composites of two samples were prepared by using stir casting method. Samples having 10 percentage & 20 percentage of silicon carbide particles (grain size ranging from 55 to 85 micron meter) by weight were fabricated in the form of cylindrical bars. Experiments were conducted in medium duty lathe by using poly crystalline diamond (PCD) insert of 1500 grade as cutting insert and the experiment was performed by using design of experiments (L27 orthogonal array) on two different samples and the parameters obtained were optimized by analyzing the power consumed by main spindle and surface finish of machined component. The results from machining of this fabricated Aluminum Alloy A356, reinforced with SiC particles MMC is highlighted in this paper. All trails were carried out with time duration of one minute. By setting these optimum parameters, tool wear study was carried out till the flank wear reached 0.4mm. The results showed that tool life was minimum while machining 20 percentage of SiC reinforcement MMC as compared with 10 percentage of SiC reinforcement. The tool wear images were captured by Cam scope with a magnification of 100X which supports the results.


Author(s):  
Ben Deng ◽  
Haowei Wang ◽  
Fangyu Peng ◽  
Rong Yan ◽  
Lin Zhou

During the machining processes of ceramic particle reinforced metal matrix composites, the severe tool wear constrains the quality and cost of the parts. This paper presents the experimental and theoretical investigations of the tool wear behavior and surface quality when micro milling the 45vol% SiCp/Al composites under dry and minimum quantity lubrication (MQL) conditions. The results of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) show that the wear mechanism of diamond coated micro mills are adhesive, abrasion, oxidization, chipping and tipping, even though it has been reported that abrasion is the most important tool wear mechanism when machining particle reinforced metal matrix composites. Compared with dry lubrication condition, the environmentally friendly MQL technique can enhance the tool life and surface roughness, and reduce the cutting force significantly under given cutting parameters. Then, finite element (FE) simulations are employed to investigate chip formation process in micro orthogonal cutting to reveal the effects of reinforced particle on tool wear and surface quality. The FE simulations shows the local high stress, hard reinforced particles in metal matrix, debonded and cracked particles are the key factors leading to the severe tool wear and the unsmoothed surface morphology.


2013 ◽  
Vol 44 (8) ◽  
pp. 3757-3764 ◽  
Author(s):  
Tracie J. Prater ◽  
Alvin M. Strauss ◽  
George E. Cook ◽  
Brian T. Gibson ◽  
Chase D. Cox

2018 ◽  
Vol 22 ◽  
pp. 47-54 ◽  
Author(s):  
Mukesh Chaudhari ◽  
M. Senthil Kumar

Aluminum based metal matrix composites (AMMC) have found its applications in the automobile, aerospace, medical, and metal industries due to their superior mechanical properties. Fabricated Aluminum based metal matrix composites require machining to improve the surface finish and dimensional tolerance. Machining should be accomplished by good surface finish by consuming lowest energy and less tool wear. This paper reviews the machining of Aluminum based metal matrix composites to investigate the effect of process parameters such as tool geometry, tool wear, surface roughness, chip formation and also process parameters.


2018 ◽  
Vol 70 (6) ◽  
pp. 1066-1071 ◽  
Author(s):  
Saravanan C. ◽  
Subramanian K. ◽  
Anandakrishnan V. ◽  
Sathish S.

Purpose Aluminium is the most preferred material in engineering structural components because of its excellent properties. Furthermore, the properties of aluminium may be enhanced through metal matrix composites and an in-depth investigation on the evolved properties is needed in view of metallurgical, mechanical and tribological aspects. The purpose of this study is to explore the effect of TiC addition on the tribological behavior of aluminium composites. Design/methodology/approach Aluminium metal matrix composites at different weight percentage of titanium carbide were produced through powder metallurgy. Produced composites were subjected to sliding wear test under dry condition through Taguchi’s L9 orthogonal design. Findings Optimal process condition to achieve the minimum wear rate was identified though the main effect plot. Sliding velocity was identified as the most dominating factor in the wear resistance. Practical implications The production of components with improved properties is promoted efficiently and economically by synthesizing the composite via powder metallurgy. Originality/value Though the investigations on the wear behavior of aluminium composites are analyzed, reinforcement types and the mode of fabrication have their significance in the metallurgical and mechanical properties. Thus, the produced component needs an in-detail study on the property evolution.


Author(s):  
Ferial Hakami ◽  
Alokesh Pramanik ◽  
Animesh K Basak

Higher tool wear and inferior surface quality of the specimens during machining restrict metal matrix composites’ application in many areas in spite of their excellent properties. The researches in this field are not well organized, and knowledge is not properly linked to give a complete overview. Thus, it is hard to implement it in practical fields. To address this issue, this article reviews tool wear and surface generation and latest developments in machining of metal matrix composites. This will provide an insight and scientific overview in this field which will facilitate the implementation of the obtained knowledge in the practical fields. It was noted that the hard reinforcements initially start abrasive wear on the cutting tool. The abrasion exposes new cutting tool surface, which initiates adhesion of matrix material to the cutting tool and thus causes adhesion wear. Built-up edges also generate at lower cutting speeds. Although different types of coating improve tool life, only diamond cutting tools show considerably longer tool life. The application of the coolants improves tool life reasonably at higher cutting speed. Pits, voids, microcracks and fractured reinforcements are common in the machined metal matrix composite surface. These are due to ploughing, indentation and dislodgement of particles from the matrix due to tool–particle interactions. Furthermore, compressive residual stress is caused by the particles’ indentation in the machined surface. At high feeds, the feed rate controls the surface roughness of the metal matrix composite; although at low feeds, it was controlled by the particle fracture or pull out. The coarser reinforced particles and lower volume fraction enhance microhardness variations beneath the machined surface.


Sign in / Sign up

Export Citation Format

Share Document