Flow Characteristics of Pulsating Flow Obstructed by an Array of Square Rods

2000 ◽  
Author(s):  
Hiroyuki Murata ◽  
Ken-ichi Sawada ◽  
Michiyuki Kobayashi

Abstract A series of flow visualization experiments of pulsating flow obstructed by an array of square rods was carried out to investigate its characteristics. When the pulsation is absent, Karman vortices shed periodically from each rod. When the pulsation period is relatively long compared with the shedding period and its amplitude is large, the flow is stabilized during the accelerating phase and, during the decelarating phase, the flow is destabilized and Karman vortices break down. When the pulsation period is shorter than shedding period and its amplitude is large, the flow pulsation controls the generation and breakdown of the Karman vortices. A numerical simulation code was developed and compared with the experimental results. When the pressure gradient parameter of the code is changed sinusoidally with time, computed results become the pulsating flow. Time variations of the streamwise pressure gradient and cross-sectional averaged velocity show similarity between the experimental and computed results.

2003 ◽  
Vol 125 (2) ◽  
pp. 382-385 ◽  
Author(s):  
S. Tsangaris ◽  
N. W. Vlachakis

The Navier-Stokes equations have been solved in order to obtain an analytical solution of the fully developed laminar flow in a duct having a rectangular cross section with two opposite equally porous walls. We obtained solutions both for the case of steady flow as well as for the case of oscillating pressure gradient flow. The pulsating flow is obtained by the superposition of the steady and oscillating pressure gradient solutions. The solution has applications for blood flow in fiber membranes used for the artificial kidney.


1966 ◽  
Vol 88 (3) ◽  
pp. 589-598 ◽  
Author(s):  
Turgut Sarpkaya

The stability of fully developed Poiseuille flow pulsating under a harmonically and a nonharmonically varying pressure gradient was studied experimentally. The characteristics of turbulent plugs were determined for both steady and pulsating flow by means of pressure transducers. It was found that (a) for oscillating, stable Poiseuille flow, the phase angles determined experimentally agree well with those determined theoretically; (b) for the same mean pressure gradient, pulsating flow is more stable than the corresponding steady Poiseuille flow; (c) in pulsating flow, the presence of one or more inflection points is necessary but not sufficient for instability; and (d) the curves of the critical Reynolds number versus the relative amplitude of the periodic component of the cross-sectional mean velocity reach their maximum when at least one inflection ring continues to exist a time period 53 percent of the period of oscillation.


2017 ◽  
Vol 10 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Wang Shou-long ◽  
Li Ai-fen ◽  
Peng Rui-gang ◽  
Yu Miao ◽  
Fu Shuai-shi

Objective:The rheological properties of oil severely affect the determination of percolation theory, development program, production technology and oil-gathering and transferring process, especially for super heavy oil reservoirs. This paper illustrated the basic seepage morphology of super heavy oil in micro pores based on its rheological characteristics.Methods:The non-linear flow law and start-up pressure gradient of super heavy oil under irreducible water saturation at different temperatures were performed with different permeable sand packs. Meanwhile, the empirical formulas between start-up pressure gradient, the parameters describing the velocity-pressure drop curve and the ratio of gas permeability of a core to fluid viscosity were established.Results:The results demonstrate that temperature and core permeability have significant effect on the non-linear flow characteristics of super heavy oil. The relationship between start-up pressure gradient of oil, the parameters representing the velocity-pressure drop curve and the ratio of core permeability to fluid viscosity could be described as a power function.Conclusion:Above all, the quantitative description of the seepage law of super heavy oil reservoir was proposed in this paper, and finally the empirical diagram for determining the minimum and maximum start-up pressure of heavy oil with different viscosity in different permeable formations was obtained.


2000 ◽  
Author(s):  
M. Atif Yardimci ◽  
Francis Loth ◽  
Noam Alperin

Abstract In the present work, a geometric and hydrodynamic characterization of an anatomically relevant spinal canal model is presented. A numerical model was employed to investigate effects of cross-sectional geometry and spinal cord motion on unsteady velocity, shear stress, and pressure gradient fields. The velocity field was shown to be blunt, due to the inertial character of the flow, with velocity peaks located near the boundaries of the spinal canal rather than at the midpoint between boundaries. The pressure gradient waveform was found to be almost exclusively dependent on the flow waveform and cross-sectional area.


AIAA Journal ◽  
1969 ◽  
Vol 7 (8) ◽  
pp. 1623-1625 ◽  
Author(s):  
C. J. SCOTT ◽  
C. J. BOERNER ◽  
T. M. KUZAY

1968 ◽  
Vol 90 (2) ◽  
pp. 395-404 ◽  
Author(s):  
H. N. Ketola ◽  
J. M. McGrew

A theory of the partially wetted rotating disk is described and experimental data presented which verify the application of this theory in practical applications. Four different flow regimes may be identified according to the value of the disk Reynolds number and the spacing ratio between the disk and stationary wall. The analytical expressions for prediction of the pressure gradient developed and the frictional resistance are uniquely determined by the disk Reynolds number, spacing ratio, and the degree of wetting of the disk.


2006 ◽  
Vol 26 (Supplement1) ◽  
pp. 77-80
Author(s):  
Tetsuo YOSHIDA ◽  
Hiroo OKANAGA ◽  
Kasumi AOKI

Sign in / Sign up

Export Citation Format

Share Document