3-D Simulation for Blood Flow and Artery Compression in Asymmetric Stenotic Arteries With Axial Stretch

Author(s):  
Dalin Tang ◽  
Chun Yang ◽  
Shunnichi Kobayashi

Abstract There has been increasing evidence that severe stenosis may cause artery compression and plaque cap rupture leading to heart attack and stroke. The physiological conditions under which that may occur and mechanisms involved are not well understood. It has been known that severe stenosis causes critical flow and wall mechanical conditions such as flow limitation, flow separation, low and oscillating shear stress distal to the stenosis, high shear stress and low or even negative flow pressure at the throat of stenosis, artery compression or even collapse. Those conditions are related to limitation of blood supply, intimal thickening and thrombosis formation, endothelism damage, platelet activation and aggregation, plaque cap rupture (for review, see [1,2]). Due to the complexity of the problem and lack of experimental data for mechanical properties of arteries under both expansion and compression, previous models were limited primarily to flow behaviors and with various limitations (axisymmetry, rigid wall, small strain, small pressure gradient). In this paper, experimental data for artery mechanical properties under physiological conditions were measured and a 3-d computational model is introduced to investigate flow behaviors and wall stress and strain distributions with fluid-structure interactions to better understand the mechanism involved in artery compression and plaque cap rupture.

Author(s):  
Jeff Shrum ◽  
Yahye Merhi ◽  
Richard L. Leask

Under normal physiological conditions platelets circulate in the plasma of blood and respond to vessel injury by changing shape, secreting granule contents and aggregating [1]. The activation of platelets in diseased or occluded arteries can form thrombosis causing a heart attack or stroke [2]. Shear stress activation has been suggested as an important contributor to increased platelet activation and adhesion seen in regions of stenosis.


2021 ◽  
Author(s):  
Zülfü C. Cosgun ◽  
Magdalena Sternak ◽  
Benedikt Fels ◽  
Anna Bar ◽  
Grzegorz Kwiatkowski ◽  
...  

Abstract The contribution of the shear-stress sensitive epithelial Na+ channel (ENaC) to the mechanical properties of the endothelial cell surface under (patho)physiological conditions is unclear. This issue was addressed in in vivo and in vitro models for endothelial dysfunction. Cultured human umbilical vein endothelial cells (HUVEC) were exposed to laminar (LSS) or non-laminar shear stress (NLSS). ENaC membrane insertion was quantified using Quantum-dot-based immunofluorescence staining and the mechanical properties of the cell surface were probed with the Atomic Force Microscope (AFM) in vitro and ex vivo in isolated aortae of C57BL/6 and ApoE/LDLR-/- mice. Flow- and acetylcholine-mediated vasodilation were measured in vivo using magnetic resonance imaging. Acute LSS led to a rapid mineralocorticoid receptor (MR)-dependent membrane insertion of ENaC and subsequent stiffening of the endothelial cortex caused by actin polymerization. Of note, NLSS stress further augmented the cortical stiffness of the cells. These effects strongly depend on the presence of the endothelial glycocalyx (eGC) and could be prevented by functional inhibition of ENaC and MR in vitro and ex vivo endothelial cells derived from C57BL/6 and ApoE/LDLR-/- vessel. As expected, in vivo in C57BL/6 vessels ENaC- and MR-inhibtion blunted flow- and acetylcholine-mediated vasodilation, while in the dysfunctional ApoE/LDLR-/- vessels this effect was absent. In conclusion, under physiological conditions, endothelial ENaC, together with the glycocalyx, was identified as an important shear stress sensor and mediator of endothelium-dependent vasodilation. In contrast, in pathophysiological conditions, ENaC-mediated mechanotransduction and endothelium-dependent vasodilation were lost, contributing to sustained endothelial stiffening and dysfunction.


1986 ◽  
Vol 14 (4) ◽  
pp. 264-291
Author(s):  
K. L. Oblizajek ◽  
A. G. Veith

Abstract Treadwear is explained by specific mechanical properties and actions of tires. Rubber shear stresses in the contact zone between the tire and the road become large at large slip angles. When normal stresses are insufficient to prevent sliding at the rear of the footprint, wear occurs at a rate that depends on test severity. Two experimental approaches are described to relate treadwear to tire characteristics. The first uses transducers imbedded in a simulated road surface to obtain direct measurements of contact stresses on the loaded, freely-rolling, steered tires. The second approach is developed with the aid of a simple carcass, tread-band, tread-rubber tire model. Various tire structural configurations; characterized by carcass spring rate, edgewise flexural band stiffness, and tread rubber shear stiffness; are simulated and lateral shear stress response in the contact zone is determined. Tires featuring high band stiffness and low carcass stiffness generate lower lateral shear stress levels. Furthermore, coupling of tread-rubber stiffness and band flexural rigidity are important in determining level of shear stresses. Laboratory measurements with the described apparatus produced values of tread-band bending and carcass lateral stiffness for several tire constructions. Good correlation is shown between treadwear and a broad range of tire stiffness and test course severities.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Fan He ◽  
Lu Hua ◽  
Tingting Guo

Abstract Background The effects of arterial wall compliance on blood flow have been revealed using fluid-structure interaction in last decades. However, microcirculation is not considered in previous researches. In fact, microcirculation plays a key role in regulating blood flow. Therefore, it is very necessary to involve microcirculation in arterial hemodynamics. Objective The main purpose of the present study is to investigate how wall compliance affects the flow characteristics and to establish the comparisons of these flow variables with rigid wall when microcirculation is considered. Methods We present numerical modeling in arterial hemodynamics incorporating fluid-structure interaction and microcirculation. A novel outlet boundary condition is employed to prescribe microcirculation in an idealised model. Results The novel finding in this work is that wall compliance under the consideration of microcirculation leads to the increase of wall shear stress in contrast to rigid wall, contrary to the traditional result that wall compliance makes wall shear stress decrease when a constant or time dependent pressure is specified at an outlet. Conclusions This work provides the valuable study of hemodynamics under physiological and realistic boundary conditions and proves that wall compliance may have a positive impact on wall shear stress based on this model. This methodology in this paper could be used in real model simulations.


Recycling ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Francesco Paolo La Mantia ◽  
Maria Chiara Mistretta ◽  
Vincenzo Titone

In this work, an additive model for the prediction of the rheological and mechanical properties of monopolymer blends made by virgin and reprocessed components is proposed. A polypropylene sample has been reprocessed more times in an extruder and monopolymer blends have been prepared by simulating an industrial process. The scraps are exposed to regrinding and are melt reprocessed before mixing with the virgin polymer. The reprocessed polymer is, then, subjected to some thermomechanical degradation. Rheological and mechanical experimental data have been compared with the theoretical predictions. The results obtained showed that the values of this simple additive model are a very good fit for the experimental values of both rheological and mechanical properties.


RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23719-23724
Author(s):  
Md. Lokman Ali

The effect of transition-metals (TM) addition on the mechanical properties of CrCoNi medium entropy alloys (MEAs) was investigated.


2020 ◽  
Vol 38 (3) ◽  
pp. 273-286 ◽  
Author(s):  
Cristina Garcia-Cabezon ◽  
Celia Garcia-Hernandez ◽  
Maria L. Rodriguez-Mendez ◽  
Gemma Herranz ◽  
Fernando Martin-Pedrosa

AbstractMicrostructural changes that result in relevant improvements in mechanical properties and electrochemical behavior can be induced using different sintering conditions of ASTM F75 cobalt alloys during their processing using powder metallurgy technique. It has been observed that the increase in carbon and nitrogen content improves corrosion resistance and mechanical properties as long as the precipitation of carbides and nitrides is avoided, thanks to the use of rapid cooling in water after the sintering stage. In addition, the reduction of the particle size of the powder improves hardness and resistance to corrosion in both acid medium with chlorides and phosphate-buffered medium that simulates the physiological conditions for its use as a biomaterial. These results lead to increased knowledge of the role of carbon and nitrogen content in the behavior displayed by the different alloys studied.


1966 ◽  
Vol 39 (5) ◽  
pp. 1436-1450
Author(s):  
K. J. Smith ◽  
D. Puett

Abstract The birefringence of natural rubber networks at large deformations has been investigated experimentally and compared with the simultaneously determined stress—strain behavior. Our data is analyzed using a statistical theory of flexibly jointed chains, derived herein, which is believed to be more significant for the particular range of deformation used than the theories of Treloar and of Kuhn and Grün. In addition, the experimental data of Saunders is commented on in light of our theoretical development. We find that for network extensions exceeding those of the Gaussian region there is little correlation between the observed and theoretical behavior of the stress and birefringence (based upon the theory of flexibly jointed chains) and this lack of agreement is attributed to the fact that the statistical parameters needed for the description of the optical chain properties differ in magnitude from those required for the mechanical properties. Furthermore, by considering the points of incipient crystallization the strain behavior of the stress-optical coefficient is highly indicative of nonGaussian behavior rather than crystallization, and therefore yields strong support for the position that nonGaussian behavior does exist in rubber networks.


Sign in / Sign up

Export Citation Format

Share Document