oscillating shear stress
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Neha Ahuja ◽  
Paige Ostwald ◽  
Alex Gendernalik ◽  
Elena Guzzolino ◽  
Letizia Pitto ◽  
...  

Heart valve development is governed by both genetic and biomechanical inputs. Prior work has demonstrated that oscillating shear stress associated with blood flow is required for normal atrioventricular (AV) valve development. Cardiac afterload is defined as the pressure the ventricle must overcome in order to pump blood throughout the circulatory system. In human patients, conditions of high afterload can cause valve pathology. Whether high afterload adversely affects embryonic valve development remains poorly understood. Here we describe a zebrafish model exhibiting increased myocardial afterload, caused by vasopressin, a vasoconstrictive drug. We show that the application of vasopressin reliably produces an increase in afterload without directly acting on cardiac tissue in zebrafish embryos. We have found that increased afterload alters the rate of growth of the cardiac chambers and causes remodeling of cardiomyocytes. Consistent with pathology seen in patients with clinically high afterload, we see defects in both the form and the function of the valve leaflets. Our results suggest that valve defects are due to changes in atrioventricular myocyte signaling, rather than pressure directly acting on the endothelial valve leaflet cells. Cardiac afterload should therefore be considered a biomechanical factor that particularly impacts embryonic valve development.


2020 ◽  
Vol 35 (10) ◽  
pp. 1473-1482 ◽  
Author(s):  
Jifeng Li ◽  
Yanting He ◽  
Hongnan Bu ◽  
Meiyue Wang ◽  
Jie Yu ◽  
...  

2019 ◽  
Vol 245 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Lan Jia ◽  
Lihua Wang ◽  
Fang Wei ◽  
Chen Li ◽  
Zhe Wang ◽  
...  

Hemodynamic forces have an important role in venous intimal hyperplasia, which is the main cause of arteriovenous fistula dysfunction. Endothelial cells (ECs) constantly exposed to the shear stress of blood flow, converted the mechanical stimuli into intracellular signals, and interacted with the underlying vascular smooth muscle cells (VSMCs). Caveolin-1 is one of the important mechanoreceptors on cytomembrane, which is related to vascular abnormalities. Extracellular signal-regulated kinase1/2 (ERK1/2) pathway is involved in the process of VSMCs proliferation and migration. In the present study, we explore the effects of Caveolin-1-ERK1/2 pathway and uremia toxins on the endothelial cells and VSMCs following shear stress application. Different shear stress was simulated with a ECs/VSMCs cocultured parallel-plate flow chamber system. Low shear stress and oscillating shear stress up-regulated the expression of fibroblast growth factor-4, platelet-derived growth factor-BB, vascular endothelial growth factor-A, ERK1/2 phosphorylation in endothelial cells, and proliferation and migration of VSMCs but down-regulated the Caveolin-1 expression in endothelial cells. Uremia toxin induces the proliferation and migration of VSMCs but not in a Caveolin-1-dependent manner in the static environment. Low shear stress-induced proliferation and migration of VSMCs is inhibited by Caveolin-1 overexpression and ERK1/2 suppression. Shear stress-regulated VSMC proliferation and migration is an endothelial cells-dependent process. Low shear stress and oscillating shear stress exert atherosclerotic influences on endothelial cells and VSMCs. Low shear stress modulated proliferation and migration of VSMCs through Caveolin-1-ERK1/2 pathway, which suggested that Caveolin-1 and ERK1/2 can be used as a new therapeutic target for the treatment of arteriovenous fistula dysfunction. Impact statement Venous intimal hyperplasia is the leading cause of arteriovenous fistula (AVF) dysfunction. This article reports that shear stress-regulated vascular smooth muscle cells (VSMCs) proliferation and migration is an endothelial cell (EC)-dependent process. Low shear stress (LSS) and oscillating shear stress (OSS) exert atherosclerotic influences on the ECs and VSMCs. LSS-induced proliferation and migration of VSMCs is inhibited by Caveolin-1 overexpression and extracellular signal-regulated kinase1/2 (ERK1/2) suppression, which suggested that Caveolin-1 and ERK1/2 can be used as a new therapeutic target for the treatment of AVF dysfunction.


Author(s):  
Saeed Islam ◽  
Muhammad Asif ◽  
Samiul Haq

In this paper Brinkman type fluid over an infinite plate between side walls is being investigated. The flow is generated by oscillating shear stress of the bottom plate and the solutions are obtained by using Fourier integral transformation. The obtained results are presented in steady and transient states for both sin and cos shear stresses. The general solutions are reduced to some special cases corresponding, namely to the Brinkman type fluid over an infinite plate and flow of a Newtonian viscous fluid. Graphical illustrations are carried out to have in depth analysis of the involved physical parameters


Author(s):  
Tracy M. Cheung ◽  
George A. Truskey

As endothelial cells (ECs) age, morphological and physiological changes occur that may alter macromolecular transport and cause subsequent disease development. ECs in atherosclerotic regions exhibit high cell turnover and high levels of oxidative stress due to transient flow patterns and low and oscillating shear stress. This leads to replicative or stress-induced senescence. Resveratrol indirectly reverses senescence-associated phenotypes via competitive inhibition of cAMP-degrading phosphodiesterases (PDEs). Elevated levels of membrane-associated cAMP activate the cyclic AMP-regulated guanosine nucleotide exchange factor Epac1 which, in turn, leads to guanosine triphosphate (GTP) binding to the small G protein Rap1. GTP bound Rap1 activates the deacetylase SIRTUIN1 (SIRT1) but also causes changes to the cortical cytoskeleton and organization of VE-cadherin mechanosensor in the endothelial junctions (Figure 1).


Open Physics ◽  
2011 ◽  
Vol 9 (3) ◽  
Author(s):  
Constantin Fetecau ◽  
Dumitru Vieru ◽  
Corina Fetecau

AbstractThe velocity field corresponding to the unsteady motion of a viscous fluid between two side walls perpendicular to a plate is determined by means of the Fourier transforms. The motion of the fluid is produced by the plate which after the time t = 0, applies an oscillating shear stress to the fluid. The solutions that have been obtained, presented as a sum of the steady-state and transient solutions satisfy the governing equation and all imposed initial and boundary conditions. In the absence of the side walls they are reduced to the similar solutions corresponding to the motion over an infinite plate. Finally, the influence of the side walls on the fluid motion, the required time to reach the steady-state, as well as the distance between the walls for which the velocity of the fluid in the middle of the channel is unaffected by their presence, are established by means of graphical illustrations.


2010 ◽  
Vol 39 (1) ◽  
pp. 402-413 ◽  
Author(s):  
Joanna Rossi ◽  
Paul Jonak ◽  
Leonie Rouleau ◽  
Lisa Danielczak ◽  
Jean-Claude Tardif ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document