Computational Methods for the Design of Deformation Processes of Porous Materials

Author(s):  
Nicholas Zabaras ◽  
Shankar Ganapathysubramanian

An updated Lagrangian framework of the continuum sensitivity method (CSM) is presented to address important computational design problems in the deformation processing of porous materials. Weak sensitivity equations are developed that are consistent with the kinematic, constitutive, contact and thermal analyses used in the solution of the direct thermomechanical problem. The CSM is here used to analyze die and preform computational design problems in industrial metal forming processes wherein temperature and the accumulated damage play an important role in influencing the deformation mechanism, material state and shape of the deformed workpiece.

Author(s):  
Diane L. Peters ◽  
Panos Y. Papalambros ◽  
A. Galip Ulsoy

Optimization of smart products requires optimizing both the artifact design and its controller. The presence of coupling between the design and control problems is an important consideration in choosing the system optimization method. Several measures of coupling have been proposed based on different viewpoints of the system. In this paper, two measures of coupling, a vector based on optimality conditions and a matrix derived from an extension of the global sensitivity equations, are shown to be related under certain conditions and to be consistent in their coupling determination. The measures’ physical interpretation and relative ease of use are discussed using the example of a positioning gantry. A further relation is derived between one measure and a modified sequential formulation that would give results sufficiently close to the true solutions.


Author(s):  
Youmna Bassiouny ◽  
Rimon Elias ◽  
Philipp Paulsen

Computational design takes a computer science view of design, applying both the science and art of computational approaches and methodologies to design problems. This article proposes to convert design methodologies studied by designers into rule-based computational design software and help them by providing suggestions for designs to build upon given a set of primitive shapes and geometrical rules. iPattern is a pattern-making software dedicated to designers to generate innovative design patterns that can be used in a decorative manner. They may be applied on wallpapers, carpets, fabric textiles, three-dimensional lanterns, tableware, etc. The purpose is to create a modern pattern design collection that adds a new essence to the place. In order to generate creative design patterns, primitive shapes and geometrical rules are used. The generated design pattern is constructed based on the grid of the Flower of Life of the sacred geometry or similar grids constructed using primitive shapes (rectangles, squares and triangles) combined in the layout of the Flower of Life.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Pinar Acar

Abstract The present work addresses a stochastic computational solution to define the property closures of polycrystalline materials under uncertainty. The uncertainty in material systems arises from the natural stochasticity of the microstructures as a result of the fluctuations in deformation processes. The microstructural uncertainty impacts the performance of engineering components by causing unanticipated anisotropy in properties. We utilize an analytical uncertainty quantification algorithm to describe the microstructural stochasticity and model its propagation on the volume-averaged material properties. The stochastic solution will be integrated into linear programming to generate the property closure that shows all possible values of the volume-averaged material properties under the uncertainty. We demonstrate example applications for stiffness parameters of α-Titanium, and multi-physics parameters (stiffness, yield strength, magnetostrictive strain) of Galfenol. Significant differences observed between stochastic and deterministic closures imply the importance of considering the microstructural uncertainty when modeling and designing materials.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Ayush Raina ◽  
Jonathan Cagan ◽  
Christopher McComb

Abstract Solving any design problem involves planning and strategizing, where intermediate processes are identified and then sequenced. This is an abstract skill that designers learn over time and then use across similar problems. However, this transfer of strategies in design has not been effectively modeled or leveraged within computational agents. This note presents an approach to represent design strategies using a probabilistic model. The model provides a mechanism to generate new designs based on certain design strategies while solving configuration design task in a sequential manner. This work also demonstrates that this probabilistic representation can be used to transfer strategies from human designers to computational design agents in a way that is general and useful. This transfer-driven approach opens up the possibility of identifying high-performing behavior in human designers and using it to guide computational design agents. Finally, a quintessential behavior of transfer learning is illustrated by agents as transferring design strategies across different problems led to an improvement in agent performance. The work presented in this study leverages the Cognitively Inspired Simulated Annealing Teams (CISAT) framework, an agent-based model that has been shown to mimic human problem-solving in configuration design problems.


2000 ◽  
Vol 123 (4) ◽  
pp. 468-475 ◽  
Author(s):  
H. B. Shim ◽  
K. C. Son

The sensitivity method is employed in this work in order to find initial blank shapes which result in desired shapes after deformation. By assuming the final deformation shape be the drawn cup with uniform trimming allowance at the flange, the corresponding initial blank which gives the desired final shape after deformation has been found. With the aid of a well-known dynamic explicit analysis code PAM-STAMP, shape sensitivity has been obtained. To get the shape sensitivity numerically, a couple of deformation processes have been analyzed. Drawings of trapezoidal cup, oil pan, and Audi front door panel, the benchmark test problem of Numisheet ’99, have been chosen as the examples. In every case the optimal blank shape has been obtained after only a few modifications without a predetermined deformation path. With the predicted optimal blank, both computer simulation and experiment are performed. Excellent agreements are obtained between simulation and experiment in every case. Through this investigation, the sensitivity method is found to be very effective in the design of arbitrary shaped drawing processes.


1995 ◽  
Vol 23 (4) ◽  
pp. 497-520 ◽  
Author(s):  
J. L. T. Santos ◽  
A. Siemaszko ◽  
S. Gollwitzer ◽  
R. Rackwitz

2021 ◽  
pp. 189-198
Author(s):  
Yuhan Chen ◽  
Youyu Lu ◽  
Tianyi Gu ◽  
Zhirui Bian ◽  
Likai Wang ◽  
...  

AbstractIn performance-based architectural design, most existing techniques and design approaches to assisting designers are primarily for a single design problem such as building massing, spatial layouts, or facade design. However, architectural design is a synthesis process that considers multiple design problems. Thus, for achieving an overall improvement in building performance, it is critical to incorporate computational techniques and methods into all key design problems. In this regard, this paper presents a full-circle application of different computational design approaches and tools to exploit the potential of building performance in driving architectural design towards more novel and sustainable buildings as well as to explore new research design paradigms for performance-based architectural design in real-world design scenarios. This paper takes a commercial complex building design as an example to demonstrate how building performance can be incorporated into different building design problems and reflect on the limitations of existing tools in supporting the architectural design.


Author(s):  
Matthew I. Campbell ◽  
Advait Limaye

This paper presents some key extensions to a representation for electromechanical components that is sufficiently detailed enough to provide for the automated construction of new design configurations. The extensions, shown here, build upon a representation that is both formal and implemented, and can handle the interactions between components even if such interactions represent only partial configurations. The results of these new additions elucidate the power and flexibility of this functional representation for electromechanical components. The method can be used as an interactive tool to allow an engineering designer to explore new design concepts or can be combined with additional software tools to achieve a computational design synthesis approach to topological design problems. The inclusion of function sharing, component layout, and qualitative dynamics achieve a closer approach to how the human mind represents components.


Sign in / Sign up

Export Citation Format

Share Document