iPattern

Author(s):  
Youmna Bassiouny ◽  
Rimon Elias ◽  
Philipp Paulsen

Computational design takes a computer science view of design, applying both the science and art of computational approaches and methodologies to design problems. This article proposes to convert design methodologies studied by designers into rule-based computational design software and help them by providing suggestions for designs to build upon given a set of primitive shapes and geometrical rules. iPattern is a pattern-making software dedicated to designers to generate innovative design patterns that can be used in a decorative manner. They may be applied on wallpapers, carpets, fabric textiles, three-dimensional lanterns, tableware, etc. The purpose is to create a modern pattern design collection that adds a new essence to the place. In order to generate creative design patterns, primitive shapes and geometrical rules are used. The generated design pattern is constructed based on the grid of the Flower of Life of the sacred geometry or similar grids constructed using primitive shapes (rectangles, squares and triangles) combined in the layout of the Flower of Life.

2018 ◽  
Vol 8 (12) ◽  
pp. 2461 ◽  
Author(s):  
Qian Wang ◽  
Gang Fang ◽  
Ying-Hong Zhao ◽  
Jie Zhou

Optimized stent pattern design can effectively enhance the mechanical performance of magnesium alloy stents by adjusting strain distribution and evolution during stent deformation, thereby overcoming the limitations imposed by the intrinsic mechanical properties of magnesium alloys. In the present study, a new stent design pattern for magnesium alloys was proposed and compared to two existing stent design patterns. Measures of the mechanical performance of these three stents, including crimping and expanding deformability, radial scaffolding capacity, radial recoil and bending flexibility, were determined. Three-dimensional finite element (FE) models were built to predict the mechanical performance of the stents with the three design patterns and to assist in understanding the experimental results. The results showed that, overall, the stent with the new design pattern was superior to the stents based on the existing designs, though the expanding capacity of the newly designed stent still needed to be improved.


2014 ◽  
Vol 666 ◽  
pp. 371-374
Author(s):  
Qi Jia ◽  
Xu Liang Lv ◽  
Wei Dong Xu ◽  
Jiang Hua Hu ◽  
Xian Hui Rong

The blending effect of design pattern of five-surface plane developed drawing is important to the design pattern. The blending of three-dimensional pattern design can realize the automation of pattern design. The target pattern design of air brushing is based on the square design picture. Therefore, the effect is bad, especially in the edges between surfaces. Edge processing method is developed to solve this problem. The pixels are compressed in accordance with the image pixel compression method. According to the processing steps, the computer programming is performed. The results shows that, the floral drawing in the blending design figure can extend to the adjacent surfaces naturally, and the blending effect is great after the three-dimensional blending perform.


Author(s):  
Galia Shlezinger ◽  
Iris Reinhartz-Berger ◽  
Dov Dori

Design patterns provide reusable solutions for recurring design problems. They constitute an important tool for improving software quality. However, correct usage of design patterns depends to a large extent on the designer. Design patterns often include models that describe the suggested solutions, while other aspects of the patterns are neglected or described informally only in text. Furthermore, design pattern solutions are usually described in an object-oriented fashion that is too close to the implementation, masking the essence of and motivation behind a particular design pattern. We suggest an approach to modeling the different aspects of design patterns and semi-automatically utilizing these models to improve software design. Evaluating our approach on commonly used design patterns and a case study of an automatic application for composing, taking, checking, and grading analysis and design exams, we found that the suggested approach successfully locates the main design problems modeled by the selected design patterns.


2011 ◽  
Vol 8 (1) ◽  
pp. 41-72
Author(s):  
Peter Kajsa ◽  
Lubomir Majtas ◽  
Pavol Navrat

Design patterns provide an especially effective way to improve the quality of a software system design as they provide abstracted, generalized and verified solutions of non-trivial design problems that occur repeatedly. The paper presents a method of design pattern instantiation support based on the key principles of both MDD and MDA. The method allows specification of the pattern instance occurrence via the semantic extension of UML directly on the context. The rest of the pattern instantiation is automated by model transformations of the specified pattern instances to lower levels of abstraction. Such approach enables the use of higher levels of abstraction in the modeling of patterns. Moreover, the model transformations are driven by models of patterns besides the instance specification, and thus the approach provides very useful ways how to determine and control the results of transformations. The method is not limited to design pattern support only, it also provides a framework for the addition of support for custom model structures which are often created in models mechanically.


Author(s):  
Jing Dong ◽  
Tu Peng ◽  
Yongtao Sun ◽  
Longji Tang ◽  
Yajing Zhao

Design patterns (Gamma, Helm, Johnson, & Vlissides, 1995) extract good solutions to standard problems in a particular context. Modern software industry has widely adopted design patterns to reuse best practices and improve the quality of software systems. Each design pattern describes a generic piece of design that can be instantiated in different applications. Multiple design patterns can be integrated to solve different design problems. To precisely and unambiguously describe a design pattern, formal specification methods are used. Each design pattern presents extensible design that can evolve after the pattern is applied. While design patterns have been applied in many large systems, pattern-related information is generally not available in source code or even the design model of a software system. Recovering pattern-related information and visualizing it in design diagrams can help to understand the original design decisions and tradeoffs. In this article, we concentrate on the issues related to design pattern instantiation, integration, formalization, evolution, visualization, and discovery. We also discuss the research work addressing these issues.


Author(s):  
Toufik Taibi

A Design pattern describes a set of proven solutions for a set of recurring design problems that occur within a context. As such, reusing patterns improves both quality and time-to-market of software projects. Currently, most patterns are specified in an informal fashion, which gives rise to ambiguity, and limits tool support and correct usage. This chapter describes balanced pattern specification language (BPSL), a language intended to accurately describe patterns in order to allow rigorous reasoning about them. BPSL incorporates the formal specification of both structural and behavioral aspects of patterns. Moreover, it can formalize pattern composition and instances of patterns (possible implementations of a given pattern).


2010 ◽  
Vol 21 (1) ◽  
pp. 29-57 ◽  
Author(s):  
Galia Shlezinger ◽  
Iris Reinhartz-Berger ◽  
Dov Dori

Design patterns provide reusable solutions for recurring design problems. They constitute an important tool for improving software quality. However, correct usage of design patterns depends to a large extent on the designer. Design patterns often include models that describe the suggested solutions, while other aspects of the patterns are neglected or described informally only in text. Furthermore, design pattern solutions are usually described in an object-oriented fashion that is too close to the implementation, masking the essence of and motivation behind a particular design pattern. We suggest an approach to modeling the different aspects of design patterns and semi-automatically utilizing these models to improve software design. Evaluating our approach on commonly used design patterns and a case study of an automatic application for composing, taking, checking, and grading analysis and design exams, we found that the suggested approach successfully locates the main design problems modeled by the selected design patterns.


2012 ◽  
Vol 2 (2) ◽  
pp. 112-116
Author(s):  
Shikha Bhatia ◽  
Mr. Harshpreet Singh

With the mounting demand of web applications, a number of issues allied to its quality have came in existence. In the meadow of web applications, it is very thorny to develop high quality web applications. A design pattern is a general repeatable solution to a generally stirring problem in software design. It should be noted that design pattern is not a finished product that can be directly transformed into source code. Rather design pattern is a depiction or template that describes how to find solution of a problem that can be used in many different situations. Past research has shown that design patterns greatly improved the execution speed of a software application. Design pattern are classified as creational design patterns, structural design pattern, behavioral design pattern, etc. MVC design pattern is very productive for architecting interactive software systems and web applications. This design pattern is partition-independent, because it is expressed in terms of an interactive application running in a single address space. We will design and analyze an algorithm by using MVC approach to improve the performance of web based application. The objective of our study will be to reduce one of the major object oriented features i.e. coupling between model and view segments of web based application. The implementation for the same will be done in by using .NET framework.


Author(s):  
Swaroop S. Vattam ◽  
Michael Helms ◽  
Ashok K. Goel

Biologically inspired engineering design is an approach to design that espouses the adaptation of functions and mechanisms in biological sciences to solve engineering design problems. We have conducted an in situ study of designers engaged in biologically inspired design. Based on this study we develop here a macrocognitive information-processing model of biologically inspired design. We also compare and contrast the model with other information-processing models of analogical design such as TRIZ, case-based design, and design patterns.


2014 ◽  
Vol 587-589 ◽  
pp. 1091-1094
Author(s):  
Xi Sheng ◽  
Hua Peng Luo ◽  
Ping Wang

Belonging to the Bentley Microstation series which work as one of the BIM platforms, the Bentley Power Rail Track shows huge advantages in the railway design for its visibility, high efficiency, advance, reliability and so on. This paper introduces the way to build the digital terrain model, alignments, cross sections, turnouts and to display the three-dimensional model of the railway for the Bentley Power Rail Track 3D railway design software. It provides application preparation for the BIM railway design and achieves the preliminary exploration of BIM applications. Bentley Power Rail Track proves capable of the BIM railway design.


Sign in / Sign up

Export Citation Format

Share Document