Anatomically Accurate Haemodynamic Simulations of Abdominal Aortic Aneurysms

Author(s):  
Evangelos Boutsianis ◽  
Thomas Frauenfelder ◽  
Simon Wildermuth ◽  
Dimos Poulikakos ◽  
Yiannis Ventikos

The pulsatile blood flow field in a patient-specific pathology of a large Abdominal Aortic Aneurysm (AAA) is being simulated, both pre and post interventionally. The anatomies of the aortic wall and blood lumen have been derived by digitized Computerized Tomography (CT) scans. Three dimensional unsteady computational fluid dynamics simulations have provided a comprehensive collection of quantitative information on the haemodynamics and the flow features that present themselves in both the temporal and spatial spaces. The focus lies on alterations in the haemodynamics triggered by the interventional procedure itself, which consists of the endoluminal introduction of a stent-graft. Significant information may also be deduced concerning the hydrodynamic loading of such implants. Computational tools of this nature, along with the non-invasive CT or Magnetic Resonance (MR) aortic imaging techniques, could enable an objective assessment of the possible effects of any interventional scenario in a virtual noninvasive environment both proximally and distally to the diseased region.

Author(s):  
A. H. Embong ◽  
A. M. Al-Jumaily ◽  
G. Mahadevan ◽  
A. Lowe ◽  
S. Sugita

Current ultrasound approaches practice probe for diagnosing instantaneous abdominal aortic aneurysms (AAA) based on arterial tissue deformation. However, tracking the progression of potential aneurysms, and predicting the risk of rupture is based on the diameter of the aneurysm and is still an insufficient method: Larger diameter aneurysms do not always lead to ruptures, and smaller diameter aneurysms unexpectedly rupture. In order to improve diagnostic accuracy of ultrasound imaging techniques, this paper presents geometric analyses of patient-specific instant deformations as a means to develop an aneurysm rupture mechanism. Segmented AAA images were used to analyze dependent elements that contribute to a three-dimensional (3-D) aneurysm reconstructive model using proposed Patient-Specific Aneurysm Rupture Predictor (P-SARP) method. The outcomes indicate that the proposed technique has the ability to associate the distortion of wall deformation with geometric analyses. This method can positively be integrated with established ultrasound techniques for improvements in the accuracy of future diagnoses of potential AAA ruptures.


Author(s):  
David M. Pierce ◽  
Thomas E. Fastl ◽  
Hannah Weisbecker ◽  
Gerhard A. Holzapfel ◽  
Borja Rodriguez-Vila ◽  
...  

Through progress in medical imaging, image analysis and finite element (FE) meshing tools it is now possible to extract patient-specific geometries from medical images of, e.g., abdominal aortic aneurysms (AAAs), and thus to study clinically relevant problems via FE simulations. Medical imaging is most often performed in vivo, and hence the reconstructed model geometry in the problem of interest will represent the in vivo state, e.g., the AAA at physiological blood pressure. However, classical continuum mechanics and FE methods assume that constitutive models and the corresponding simulations start from an unloaded, stress-free reference condition.


Author(s):  
Ender A. Finol ◽  
Shoreh Hajiloo ◽  
Keyvan Keyhani ◽  
David A. Vorp ◽  
Cristina H. Amon

Abdominal Aortic Aneurysms (AAAs) are characterized by a continuous dilation of the infrarenal segment of the abdominal aorta. Despite significant improvements in surgical procedures and imaging techniques, the mortality and morbidity rates associated with untreated ruptured AAAs are still outrageously high. AAA disease is a health risk of significant importance since this kind of aneurysm is mostly asymptomatic until its rupture, which is frequently a lethal event with an overall mortality rate in the 80% to 90% range. From a purely biomechanical viewpoint, aneurysm rupture is a phenomenon that occurs when the mechanical stress acting on the dilating inner wall exceeds its failure strength. Since the internal mechanical forces are maintained by the dynamic action of blood flowing in the aorta, the quantification of the hemodynamics of AAAs is essential for the characterization of their biomechanical environment.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Giampaolo Martufi ◽  
Elena S. Di Martino ◽  
Cristina H. Amon ◽  
Satish C. Muluk ◽  
Ender A. Finol

The clinical assessment of abdominal aortic aneurysm (AAA) rupture risk is based on the quantification of AAA size by measuring its maximum diameter from computed tomography (CT) images and estimating the expansion rate of the aneurysm sac over time. Recent findings have shown that geometrical shape and size, as well as local wall thickness may be related to this risk; thus, reliable noninvasive image-based methods to evaluate AAA geometry have a potential to become valuable clinical tools. Utilizing existing CT data, the three-dimensional geometry of nine unruptured human AAAs was reconstructed and characterized quantitatively. We propose and evaluate a series of 1D size, 2D shape, 3D size, 3D shape, and second-order curvature-based indices to quantify AAA geometry, as well as the geometry of a size-matched idealized fusiform aneurysm and a patient-specific normal abdominal aorta used as controls. The wall thickness estimation algorithm, validated in our previous work, is tested against discrete point measurements taken from a cadaver tissue model, yielding an average relative difference in AAA wall thickness of 7.8%. It is unlikely that any one of the proposed geometrical indices alone would be a reliable index of rupture risk or a threshold for elective repair. Rather, the complete geometry and a positive correlation of a set of indices should be considered to assess the potential for rupture. With this quantitative parameter assessment, future research can be directed toward statistical analyses correlating the numerical values of these parameters with the risk of aneurysm rupture or intervention (surgical or endovascular). While this work does not provide direct insight into the possible clinical use of the geometric parameters, we believe it provides the foundation necessary for future efforts in that direction.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Evangelos Boutsianis ◽  
Michele Guala ◽  
Ufuk Olgac ◽  
Simon Wildermuth ◽  
Klaus Hoyer ◽  
...  

There is considerable interest in computational and experimental flow investigations within abdominal aortic aneurysms (AAAs). This task stipulates advanced grid generation techniques and cross-validation because of the anatomical complexity. The purpose of this study is to examine the feasibility of velocity measurements by particle tracking velocimetry (PTV) in realistic AAA models. Computed tomography and rapid prototyping were combined to digitize and construct a silicone replica of a patient-specific AAA. Three-dimensional velocity measurements were acquired using PTV under steady averaged resting boundary conditions. Computational fluid dynamics (CFD) simulations were subsequently carried out with identical boundary conditions. The computational grid was created by splitting the luminal volume into manifold and nonmanifold subsections. They were filled with tetrahedral and hexahedral elements, respectively. Grid independency was tested on three successively refined meshes. Velocity differences of about 1% in all three directions existed mainly within the AAA sack. Pressure revealed similar variations, with the sparser mesh predicting larger values. PTV velocity measurements were taken along the abdominal aorta and showed good agreement with the numerical data. The results within the aneurysm neck and sack showed average velocity variations of about 5% of the mean inlet velocity. The corresponding average differences increased for all velocity components downstream the iliac bifurcation to as much as 15%. The two domains differed slightly due to flow-induced forces acting on the silicone model. Velocity quantification through narrow branches was problematic due to decreased signal to noise ratio at the larger local velocities. Computational wall pressure and shear fields are also presented. The agreement between CFD simulations and the PTV experimental data was confirmed by three-dimensional velocity comparisons at several locations within the investigated AAA anatomy indicating the feasibility of this approach.


Author(s):  
David A. Vorp ◽  
Samarth Shah ◽  
Michel S. Makaroun

Abdominal aortic aneurysm (AAA) rupture is the 13th leading cause of death in the US. Clinicians attempt to avoid rupture by performing elective repair. Since AAAs are often times asymptomatic, impending AAA rupture can be without warning. Additionally, patients with AAA are often elderly or have co-morbid conditions. Therefore, the treatment of AAA patients presents a dilemma for the surgeon: surgery should only be recommended when the risk of rupture of the AAA outweighs the risks associated with the interventional procedure.


Author(s):  
Nora Rat ◽  
Iolanda Muntean ◽  
Diana Opincariu ◽  
Liliana Gozar ◽  
Rodica Togănel ◽  
...  

Development of interventional methods has revolutionized the treatment of structural cardiac diseases. Given the complexity of structural interventions and the anatomical variability of various structural defects, novel imaging techniques have been implemented in the current clinical practice for guiding the interventional procedure and for selection of the device to be used. Three– dimensional echocardiography is the most used imaging method that has improved the threedimensional assessment of cardiac structures, and it has considerably reduced the cost of complications derived from malalignment of interventional devices. Assessment of cardiac structures with the use of angiography holds the advantage of providing images in real time, but it does not allow an anatomical description. Transesophageal Echocardiography (TEE) and intracardiac ultrasonography play major roles in guiding Atrial Septal Defect (ASD) or Patent Foramen Ovale (PFO) closure and device follow-up, while TEE is the procedure of choice to assess the flow in the Left Atrial Appendage (LAA) and the embolic risk associated with a decreased flow. On the other hand, contrast CT and MRI have high specificity for providing a detailed description of structure, but cannot assess the flow through the shunt or the valvular mobility. This review aims to present the role of modern imaging techniques in pre-procedural assessment and intraprocedural guiding of structural percutaneous interventions performed to close an ASD, a PFO, an LAA or a patent ductus arteriosus.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Sergio Ruiz de Galarreta ◽  
Aitor Cazón ◽  
Raúl Antón ◽  
Ender A. Finol

The goal of this work is to develop a framework for manufacturing nonuniform wall thickness replicas of abdominal aortic aneurysms (AAAs). The methodology was based on the use of computed tomography (CT) images for virtual modeling, additive manufacturing for the initial physical replica, and a vacuum casting process and range of polyurethane resins for the final rubberlike phantom. The average wall thickness of the resulting AAA phantom was compared with the average thickness of the corresponding patient-specific virtual model, obtaining an average dimensional mismatch of 180 μm (11.14%). The material characterization of the artery was determined from uniaxial tensile tests as various combinations of polyurethane resins were chosen due to their similarity with ex vivo AAA mechanical behavior in the physiological stress configuration. The proposed methodology yields AAA phantoms with nonuniform wall thickness using a fast and low-cost process. These replicas may be used in benchtop experiments to validate deformations obtained with numerical simulations using finite element analysis, or to validate optical methods developed to image ex vivo arterial deformations during pressure-inflation testing.


Sign in / Sign up

Export Citation Format

Share Document