reconstructed model
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 18)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Vladimir Geraldovich Borisov ◽  
Yuri Nikolaevich Zakharov ◽  
Anton Nilolaevich Kazantsev ◽  
Alexander Vladimirovich Korotkikh ◽  
Yuri Ivanovich Shokin ◽  
...  

Abstract Objective: The article describes a method for constructing geometric models of the carotid bifurcation and computer simulation of endarterectomy surgery with the patches of various configurations. The purpose of this work is to identify the areas of the greatest risk of restenosis in the constructed models and to conduct a comparative analysis of risk factors when using the patches of different widths and shapes. Methods: The method is demonstrated on a reconstructed model of a healthy vessel. Its building is based on a preoperative computed tomography study of a particular patient's affected vessel. The flow in the vessel is simulated by computational fluid dynamics using data from the patient's ultrasound Doppler velocimetry. Risk factors are assessed through the hemodynamic indices on the vessel wall associated with Wall Shear Stress. Results: The distribution of risk zones in the healthy vessel, presumably leading to its observed lesion (plaque), is analyzed. Comparative evaluation of 10 various patches implantation results is carried out and the optimal variant is determined. The proposed method can be used to predict the hemodynamic results of surgery using patches of various sizes and shapes.


2022 ◽  
Vol 355 ◽  
pp. 03026
Author(s):  
Shiheng Zhang ◽  
Shaopeng Zhang ◽  
Jianyang Chen ◽  
Xiuling Wang

3D reconstruction of human body model is a very important research topic in 3D reconstruction and also a challenging research direction in engineering field. In this paper, the whole pipeline flow of 3D reconstruction of human body model based on incremental motion recovery structure is proposed. Use mobile phone to collect images from different angles and screen them; Secondly, feature extraction and matching under SIFT operator, sparse reconstruction of incremental motion recovery structure, dense reconstruction based on depth map and other processes are carried out. Poisson surface reconstruction is finally carried out to achieve model reconstruction. Experiments show that the effect subject of the reconstructed model is clear.


Author(s):  
Alokananda Kar ◽  
Shouvik Sadhukhan ◽  
Ujjal Debnath

In this paper, we have used the reconstructed Dirac–Born–Infeld (DBI)-essence dark energy density to modify the mass accretions of black holes and wormholes. In general, the black hole mass accretion does not depend on the metric or local Einstein geometry. That is why we have used a generalized mechanism by reconstructing the DBI-essence dark energy reconstruction with [Formula: see text] gravity. We have used some particular forms of the scale factor to analyze the accretion phenomena. We have shown the effect of cosmic evolution in the proper time variation of black hole mass accretion. Finally, we have studied the validity of energy conditions and analyzed the Type I–IV singularities for our reconstructed model.


Author(s):  
Julia Habetzeder

With its original manifestation generally dated to c. 150 BC, the Invitation to the Dance is a textbook example of Hellenistic sculpture. But despite much scholarly attention there is still no consensus as to what motif the sculpture group depicts. Inspired by intertextual theory, this study catalogues and re-examines 35 sculptures of the female figure and 34 sculptures of the satyr. The article focuses on preserved sculptures, rather than a reconstructed model image. Variations of the repeated forms are highlighted as significant for the interpretation of the types. The reading of the Invitation to the Dance thus put forward suggests that the group composition displays the moment after the satyr has pulled the female’s garment down from her upper body. It is furthermore emphasized that both satyr and female figure were at times—perhaps even predominately—displayed as solitary figures. The satyr’s foot-clapper is suggested to have been included primarily in instances where the satyr was displayed on his own. Sculptures of the female figure fending off —though not touching—an intrusive companion could have been paired with other Dionysian figures as well, a practice that might be reflected in sculptures that show this female type in other group compositions.


Author(s):  
Maria Wacławek ◽  
Maria Wtorkowska

This article discusses attitudes towards the family – one of the distinct semantic categories forming the linguo-cultural stereotype of a Pole, which we have reconstructed on the basis of questionnaire data. The methodology used is that of the linguistic image of the world, which includes stereotypes. The linguistic data was divided into sections: 1) type of relationship; 2) starting a family; family size and members; 3) other. The reconstructed model confirms that Poles have a very positive attitude to the family – as seen from their own, as well as a foreign (Slovenian) perspective. Poles form close family bonds, which is demonstrated by their strong attachment to tradition and family.


2021 ◽  
Vol 10 (18) ◽  
pp. 4272
Author(s):  
Jai Hyun Chung ◽  
Chong Hyuk Choi ◽  
Sung-Hwan Kim ◽  
Sung-Jae Kim ◽  
Seung-Kyu Lee ◽  
...  

The posterior tibial slope of the tibiofemoral joint changes after medial open wedge high tibial osteotomy (MOWHTO), but little is known about the effect of the sagittal osteotomy inclination angle on the change in the posterior tibial slope of the tibiofemoral joint. The purpose of this study was to investigate the effect of the osteotomy inclination angle in the sagittal plane on changes in the posterior tibial slope after MOWHTO by comparing how anterior and posterior inclination affect the posterior tibial slope of the tibiofemoral joint. The correlation between the osteotomy inclination angle and the postoperative posterior tibial slope angle was also assessed. Between May 2011 and November 2017, 80 patients with medial compartment osteoarthritis who underwent MOWHTO were included. The patients were divided into two groups according to the sagittal osteotomy inclination angle on the 3D reconstructed model. Patients with an osteotomy line inclined anteriorly to the medial tibial plateau line were classified into group A (58 patients). Patients with posteriorly inclined osteotomy line were classified as group P (22 patients). In the 3D reconstructed model, the preoperative and postoperative posterior tibial slope, osteotomy inclination angle relative to medial tibial plateau line in sagittal plane, and gap distance and ratio of the anterior and posterior osteotomy openings were measured. The preoperative and postoperative hip-knee-ankle angle, weight-bearing line ratio, and posterior tibial slope were also measured using plain radiographs. In the 3D reconstructed model, the postoperative posterior tibial slope significantly increased in group A (preoperative value = 9.7 ± 2.9°, postoperative value = 10.7 ± 3.0°, p < 0.001) and decreased in group P (preoperative value = 8.7 ± 2.7°, postoperative value = 7.7 ± 2.7°, p < 0.001). The postoperative posterior tibial slope (group A = 10.7 ± 3.0°, group P = 7.7 ± 2.7°, p < 0.001) and posterior tibial slope change before and after surgery (group A = 1.0 ± 0.8°, group P = −0.9 ± 0.8°, p < 0.001) also differed significantly between the groups. The Pearson correlation coefficient was 0.875 (p < 0.001) for the osteotomy inclination angle, and multivariate regression analysis showed that the only significant factor among the variables was the sagittal osteotomy inclination angle (β coefficient = 0.216, p < 0.001). The posterior tibial slope changed according to the osteotomy inclination angle in the sagittal plane after MOWHTO. The postoperative posterior tibial slope tended to increase when the osteotomy line was inclined anteriorly with respect to the medial tibial plateau line but decreased when the osteotomy line was inclined posteriorly. To avoid inadvertent change of posterior tibial slope, close attention needs to be paid to maintaining the sagittal osteotomy line parallel to the medial joint line during MOWHTO.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2081 ◽  
Author(s):  
Dongseok Kang ◽  
Chang Wook Ahn

Federated learning is a distributed learning algorithm designed to train a single server model on a server using different clients and their local data. To improve the performance of the server model, continuous communication with clients is required, and since the number of clients is very large, the algorithm must be designed in consideration of the cost required for communication. In this paper, we propose a method for distributing a model with a structure different from that of the server model, distributing a model suitable for clients with different data sizes, and training a server model using the reconstructed model trained by the client. In this way, the server model deploys only a subset of the sequential model, collects gradient updates, and selectively applies updates to the server model. This method of delivering the server model at a lower cost to clients who only need smaller models can reduce the communication cost of training server models compared to standard methods. An image classification model was designed to verify the effectiveness of the proposed method via three data distribution situations and two datasets, and it was confirmed that training was accomplished only with a cost 0.229 times smaller than the standard method.


2021 ◽  
Author(s):  
Weixiao Shang ◽  
Mateo Gomez ◽  
Terrence R. Meyer ◽  
Jun Chen

Abstract Digital inline holography (DIH), as a three-dimensional (3D) measurement technique, is widely used in characterizations of the particles, droplets or bubbles under different multi-phase flow circumstances. By analyzing the phase information carried by the interference pattern, the reconstruction of shape and the location of a test target is then achieved. However, such reconstruction mechanism produces different levels of uncertainty between the in-plane (the plane parallel to the hologram plane) direction and out-of-plane (the plane normal to the hologram plane) direction, and the uncertainty of the latter is larger than the former. Also, the reconstruction algorithm fails when the interference patterns of some sections of the target are overlapped on the hologram since the overlapped patterns are merged into a pure shadow which doesn’t carry any phase information. This paper tested a method, the Multi-view Digital Inline Holography (MvDIH), that combines the holograms recorded from multiple views to overcome the addressed defects of the single view DIH. This technique uses the similar setup as the DIH but applies a different post-process method to implement the reconstruction. As the DIH is applied to each view, one can not only acquire the cross-section of the target in the hologram plane but also the outline of such cross-section in the space. Then, two reconstruction methods with different ideologies are developed as, the one based on the outline and the one based on the cross-section. A post-process algorithm is developed to realize these two reconstruction methods with the holograms recorded from different views. To evaluate the performance of the Multi-view DIH, a test model which imitates the droplet and liquid ligament structure is 3D printed and measured by the proposed method. The results demonstrate that, with only three view, both method provides limited reconstruction result. When comparing to the true test model, for the outline based method, some parts of the reconstructed model are missing and some details are merged into one piece with simple geometry. Yet, for the cross-section based method, the reconstructed model contains redundant parts which also make such result unsatisfied. As the used holograms are increased to six views, the reconstructed result for cross-section based method is approaching to the true model, but still some sections are reconstructed with certain level of ambiguity.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6267-6280
Author(s):  
Guiling Zhao ◽  
Chang Liu ◽  
Zhaowen Qiu ◽  
Zongji Deng ◽  
Jinhua Gong

A visualization method was used in this work for the 3D morphology of internal defects in wooden products using a Philips Brilliance 16 computed tomography (CT). To obtain a high-quality 3D digital model, the original images from the CT scan were segmented to manually color the cross- and vertical sections of the wooden specimen. Through coloring, the reconstructed model showed the accurate 3D morphology of internal defects, such as cracks, wormholes, and decay parts, as well as clear shapes of borer excrement, nails, bark, and wood parts of the specimen. The results suggest that this method provides precise 3D models of different types of defects in the wooden specimen. It can also accurately measure the size and angle of the defects at any position for further observation. This method can be effectively used for non-destructive testing of wooden products and wooden cultural relics and can provide accurate scales of defects and intuitive 3D models for wooden products and wooden cultural relics restoration.


2020 ◽  
Vol 10 (9) ◽  
pp. 3059
Author(s):  
Eui Soo Kim

Techniques to analyze damage to a human body provide an important foundation to investigate the human body’s dynamics during accidents. However, the systematic investigation and analysis of accidents’ causes are limited due to a lack of suitable technology, personnel, and equipment. Recently, 3-D technologies and engineering verification through the finite element method have become widespread in forensics to investigate accidents’ causes and dynamic environments. Bone fracture analyses can provide important information on how victims may have died and injured. In this study, 3-D images obtained from multi-detector computed tomography of personal injuries and closed-circuit television, as well as image analyses based on forensic investigations, are used in a finite element program to analyze how ribs are broken during an accident and the possibility of further body damage. Technologies that deduce stress states and mechanisms are also developed in this study using FE analyses of the reconstructed model.


Sign in / Sign up

Export Citation Format

Share Document