Modeling and Experimental Study of Flow Forces for Unstable Valve Design

Author(s):  
Qinghui Yuan ◽  
Perry Y. Li

Single stage electrohydraulic flow control valves are currently not suitable in high flow rate and high frequency applicaitons. This is due to the very significant flow induced forces and the power/force limitation of electromagnetic actuators that directly stokes the spool. An unstable valve has been proposed that can utilize the flow forces to achieve fast responses at high flow rate. In this paper, we model the flow forces, including both steady and transient, of a directional flow control valve for incompressible and viscous fluid. In particular, the viscosity effect and non-orifice flux are investigated. The new models have been verified by CFD analysis to be more accurate than the old models. The paper also presents a systematic experimental study on the flow forces, in particular on the steady flow forces. The estimates according to our new models, revised slightly due to the limitation of the experiment, are consistent with the experimental results. Both the experimental results and the modeling estimation show that, for an unstable valve with negative damping length, both transient and steady flow forces can help to achieve the higher spool agility. The satisfactory modeling and experimental study on the flow forces give us a grounding for the future research of unstable valve design.

2017 ◽  
Vol 137 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Daisuke Hirooka ◽  
Tomomi Yamaguchi ◽  
Naomichi Furushiro ◽  
Koichi Suzumori ◽  
Takefumi Kanda

Author(s):  
Ke Jiang ◽  
Xuedong Chen ◽  
Tiecheng Yang ◽  
Zongchuan Qin

The corrosion behaviors of 321 and 316L austenitic stainless steel in high-temperature and high-flow rate naphthenic acid medium were investigated by pipe-flow and jet-impingement method. The influence of temperature and erosion angle on naphthenic acid corrosion resistance for stainless steel was analyzed. The results indicate that the naphthenic acid corrosion rate increased with increasing temperature and velocity. At the same temperature, the corrosion rate at 90° erosion angle is greater than that at 0°. The present experimental results are very close to those in API 581. Simulation results indicate that, where the mutation of flow direction occurs around the specimen, the near-wall turbulence intensities are very large by both experimental methods. Moreover, by comparing both the simulation and experimental results, it can be found that the naphthenic acid corrosion is very severe in areas of high turbulence.


2010 ◽  
Author(s):  
D. S. Zhu ◽  
J. Y. Sun ◽  
S. D. Tu ◽  
Z. D. Wang ◽  
Liejin Guo ◽  
...  

2018 ◽  
Vol 152 ◽  
pp. 02015
Author(s):  
Yoong Sion Ong ◽  
Ken Sim Ong ◽  
Y.k. Tan ◽  
Azadeh Ghadimi

A conventional design of rainwater harvesting system collects and directs the rainwater through water piping from roof of building to the water storage. The filtration system which locates before the water tank storage and first flush bypass system is the main focus of the research. A filtration system consists of a control volume of filter compartment, filter screen (stainless steel mesh) and water piping that direct the water flow. The filtration efficiency of an existing filter “3P Volume Filter VF1” by industrial company is enhanced. A full scale filter design prototype with filter screen of 1000 μm stainless steel metal mesh is tested to compare with the original filter system design. Three types of water inlet setups are tested. Among the proposed water inlet setups, the 90° inlet setup with extension provides the best filtration rate per unit time, following by the 45° inlet setup. The 45° and 90° inlet setup has similar filtration efficiency at low to medium flow rate while 45° inlet setup has better efficiency at high flow rate. The filtration efficiency with the 90° inlet setup with extension is observed to maintain at highest value at medium to high flow rate. The overall filtration performance achieved by the 90° inlet setup with extension at low to high flow rate is between 34.1 to 35.7%.


1992 ◽  
Vol 96 (3) ◽  
pp. 1228-1233 ◽  
Author(s):  
Laszlo Gyorgyi ◽  
Richard J. Field ◽  
Zoltan Noszticzius ◽  
William D. McCormick ◽  
Harry L. Swinney

2017 ◽  
Vol 18 (3) ◽  
pp. 188-195 ◽  
Author(s):  
Tapio Lantela ◽  
Matti Pietola

Sign in / Sign up

Export Citation Format

Share Document