HP-Adaptive Time-Discontinuous Galerkin Finite Element Methods for Time-Dependent Waves

Author(s):  
Sethuramalingam Subbarayalu ◽  
Lonny L. Thompson

hp-Adaptive time-discontinuous Galerkin methods are developed for second-order hyperbolic systems. Explicit a priori error estimates in terms of time-step size, approximation order, and solution regularity are derived. Knowledge of these a priori convergence rates in combination with a posteriori error estimates computed from the jump in time-discontinuous solutions are used to automatically select time-step size h and approximation order p to achieve a specified error tolerance with a minimal number of total degrees-of-freedom. We show that the temporal jump error is a good indicator of the local error, and the summation of jump error for the total interval is good indicator for the global and accumulation errors. In addition, the accumulation error at the end of a time-step can be estimated well by the summation of the local jump error at the beginning of a time-step provided the approximation order is greater or equal to the solution regularity. Superconvergence of the end points of a time-step for high-order polynomials are also demonstrated.

2015 ◽  
Vol 143 (3) ◽  
pp. 972-990 ◽  
Author(s):  
Lei Bao ◽  
Robert Klöfkorn ◽  
Ramachandran D. Nair

Abstract A two-dimensional nonhydrostatic (NH) atmospheric model based on the compressible Euler system has been developed in the (x, z) Cartesian domain. The spatial discretization is based on a nodal discontinuous Galerkin (DG) method with exact integration. The orography is handled by the terrain-following height-based coordinate system. The time integration uses the horizontally explicit and vertically implicit (HEVI) time-splitting scheme, which is introduced to address the stringent restriction on the explicit time step size due to a high aspect ratio between the horizontal (x) and vertical (z) spatial discretization. The HEVI scheme is generally based on the Strang-type operator-split approach, where the horizontally propagating waves in the Euler system are solved explicitly while the vertically propagating waves are treated implicitly. As a consequence, the HEVI scheme relaxes the maximum allowed time step to be mainly determined by the horizontal grid spacing. The accuracy of the HEVI scheme is rigorously compared against that of the explicit strong stability-preserving (SSP) Runge–Kutta (RK) scheme using several NH benchmark test cases. The HEVI scheme shows a second-order temporal convergence, as expected. The results of the HEVI scheme are qualitatively comparable to those of the SSP-RK3 scheme. Moreover, the HEVI DG formulation can also be seamlessly extended to account for the second-order diffusion as in the case of the standard SSP-RK DG formulation. In the presence of orography, the HEVI scheme produces high quality results, which are visually identical to those produced by the SSP-RK3 scheme.


2011 ◽  
Vol 139 (2) ◽  
pp. 457-473 ◽  
Author(s):  
Rick Archibald ◽  
Katherine J. Evans ◽  
John Drake ◽  
James B. White

Abstract In this paper a new approach is presented to increase the time-step size for an explicit discontinuous Galerkin numerical method. The attributes of this approach are demonstrated on standard tests for the shallow-water equations on the sphere. The addition of multiwavelets to the discontinuous Galerkin method, which has the benefit of being scalable, flexible, and conservative, provides a hierarchical scale structure that can be exploited to improve computational efficiency in both the spatial and temporal dimensions. This paper explains how combining a multiwavelet discontinuous Galerkin method with exact-linear-part time evolution schemes, which can remain stable for implicit-sized time steps, can help increase the time-step size for shallow-water equations on the sphere.


2019 ◽  
Vol 29 (7) ◽  
pp. 2297-2323 ◽  
Author(s):  
Etienne Muller ◽  
Dominique Pelletier ◽  
André Garon

Purpose This paper aims to focus on characterization of interactions between hp-adaptive time-integrators based on backward differentiation formulas (BDF) and adaptive meshing based on Zhu and Zienkiewicz error estimation approach. If mesh adaptation only occurs at user-supplied times and results in a completely new mesh, it is necessary to stop the time-integration at these same times. In these conditions, one challenge is to find an efficient and reliable way to restart the time-integration. The authors investigate what impact grid-to-grid interpolation errors have on the relaunch of the computation. Design/methodology/approach Two restart strategies of the time-integrator were used: one based on resetting the time-step size h and time-integrator order p to default values (used in the initial startup phase), and another designed to restart with the time-step size h and order p used by the solver prior to remeshing. The authors also investigate the benefits of quadratically interpolate the solution on the new mesh. Both restart strategies were used to solve laminar incompressible Navier–Stokes and the Unsteady Reynolds Averaged Naviers-Stokes (URANS) equations. Findings The adaptive features of our time-integrators are excellent tools to quantify errors arising from the data transfer between two grids. The second restart strategy proved to be advantageous only if a quadratic grid-to-grid interpolation is used. Results for turbulent flows also proved that some precautions must be taken to ensure grid convergence at any time of the simulation. Mesh adaptation, if poorly performed, can indeed lead to losing grid convergence in critical regions of the flow. Originality/value This study exhibits the benefits and difficulty of assessing both spatial error estimates and local error estimates to enhance the efficiency of unsteady computations.


2018 ◽  
Vol 16 (1) ◽  
pp. 210-218
Author(s):  
Sunyoung Bu

AbstractIn this paper, we introduce a practical strategy to select an adaptive time step size suitable for the parareal algorithm designed to parallelize a numerical scheme for solving stiff initial value problems. For the adaptive time step size, a technique to detect stiffness of a given system is first considered since the step size will be chosen according to the extent of stiffness. Finally, the stiffness detection technique is applied to an initial prediction step of the parareal algorithm, and select an adaptive step size to each time interval according to the stiffness. Several numerical experiments demonstrate the efficiency of the proposed method.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
S. S. Ravindran

Micropolar fluid model consists of Navier-Stokes equations and microrotational velocity equations describing the dynamics of flows in which microstructure of fluid is important. In this paper, we propose and analyze a decoupled time-stepping algorithm for the evolutionary micropolar flow. The proposed method requires solving only one uncoupled Navier-Stokes and one microrotation subphysics problem per time step. We derive optimal order error estimates in suitable norms without assuming any stability condition or time step size restriction.


Author(s):  
Ethan Corle ◽  
Matthew Floros ◽  
Sven Schmitz

The methods of using the viscous vortex particle method, dynamic inflow, and uniform inflow to conduct whirl-flutter stability analysis are evaluated on a four-bladed, soft-inplane tiltrotor model using the Rotorcraft Comprehensive Analysis System. For the first time, coupled transient simulations between comprehensive analysis and a vortex particle method inflow model are used to predict whirl-flutter stability. Resolution studies are performed for both spatial and temporal resolution in the transient solution. Stability in transient analysis is noted to be influenced by both. As the particle resolution is refined, a reduction in simulation time-step size must also be performed. An azimuthal time step size of 0.3 deg is used to consider a range of particle resolutions to understand the influence on whirl-flutter stability predictions. Comparisons are made between uniform inflow, dynamic inflow, and the vortex particle method with respect to prediction capabilities when compared to wing beam-bending frequency and damping experimental data. Challenges in assessing the most accurate inflow model are noted due to uncertainty in experimental data; however, a consistent trend of increasing damping with additional levels of fidelity in the inflow model is observed. Excellent correlation is observed between the dynamic inflow predictions and the vortex particle method predictions in which the wing is not part of the inflow model, indicating that the dynamic inflow model is adequate for capturing damping due to the induced velocity on the rotor disk. Additional damping is noted in the full vortex particle method model, with the wing included, which is attributed to either an interactional aerodynamic effect between the rotor and the wing or a more accurate representation of the unsteady loading on the wing due to induced velocities.


Author(s):  
Jesús Cardenal ◽  
Javier Cuadrado ◽  
Eduardo Bayo

Abstract This paper presents a multi-index variable time step method for the integration of the equations of motion of constrained multibody systems in descriptor form. The basis of the method is the augmented Lagrangian formulation with projections in index-3 and index-1. The method takes advantage of the better performance of the index-3 formulation for large time steps and of the stability of the index-1 for low time steps, and automatically switches from one method to the other depending on the required accuracy and values of the time step. The variable time stepping is accomplished through the use of an integral of motion, which in the case of conservative systems becomes the total energy. The error introduced by the numerical integrator in the integral of motion during consecutive time steps provides a good measure of the local integration error, and permits a simple and reliable strategy for varying the time step. Overall, the method is efficient and powerful; it is suitable for stiff and non-stiff systems, robust for all time step sizes, and it works for singular configurations, redundant constraints and topology changes. Also, the constraints in positions, velocities and accelerations are satisfied during the simulation process. The method is robust in the sense that becomes more accurate as the time step size decreases.


Sign in / Sign up

Export Citation Format

Share Document