Horizontally Explicit and Vertically Implicit (HEVI) Time Discretization Scheme for a Discontinuous Galerkin Nonhydrostatic Model

2015 ◽  
Vol 143 (3) ◽  
pp. 972-990 ◽  
Author(s):  
Lei Bao ◽  
Robert Klöfkorn ◽  
Ramachandran D. Nair

Abstract A two-dimensional nonhydrostatic (NH) atmospheric model based on the compressible Euler system has been developed in the (x, z) Cartesian domain. The spatial discretization is based on a nodal discontinuous Galerkin (DG) method with exact integration. The orography is handled by the terrain-following height-based coordinate system. The time integration uses the horizontally explicit and vertically implicit (HEVI) time-splitting scheme, which is introduced to address the stringent restriction on the explicit time step size due to a high aspect ratio between the horizontal (x) and vertical (z) spatial discretization. The HEVI scheme is generally based on the Strang-type operator-split approach, where the horizontally propagating waves in the Euler system are solved explicitly while the vertically propagating waves are treated implicitly. As a consequence, the HEVI scheme relaxes the maximum allowed time step to be mainly determined by the horizontal grid spacing. The accuracy of the HEVI scheme is rigorously compared against that of the explicit strong stability-preserving (SSP) Runge–Kutta (RK) scheme using several NH benchmark test cases. The HEVI scheme shows a second-order temporal convergence, as expected. The results of the HEVI scheme are qualitatively comparable to those of the SSP-RK3 scheme. Moreover, the HEVI DG formulation can also be seamlessly extended to account for the second-order diffusion as in the case of the standard SSP-RK DG formulation. In the presence of orography, the HEVI scheme produces high quality results, which are visually identical to those produced by the SSP-RK3 scheme.

2011 ◽  
Vol 139 (2) ◽  
pp. 457-473 ◽  
Author(s):  
Rick Archibald ◽  
Katherine J. Evans ◽  
John Drake ◽  
James B. White

Abstract In this paper a new approach is presented to increase the time-step size for an explicit discontinuous Galerkin numerical method. The attributes of this approach are demonstrated on standard tests for the shallow-water equations on the sphere. The addition of multiwavelets to the discontinuous Galerkin method, which has the benefit of being scalable, flexible, and conservative, provides a hierarchical scale structure that can be exploited to improve computational efficiency in both the spatial and temporal dimensions. This paper explains how combining a multiwavelet discontinuous Galerkin method with exact-linear-part time evolution schemes, which can remain stable for implicit-sized time steps, can help increase the time-step size for shallow-water equations on the sphere.


Author(s):  
Stefan Hante ◽  
Denise Tumiotto ◽  
Martin Arnold

AbstractIn this paper, we will consider a geometrically exact Cosserat beam model taking into account the industrial challenges. The beam is represented by a framed curve, which we parametrize in the configuration space $\mathbb{S}^{3}\ltimes \mathbb{R}^{3}$ S 3 ⋉ R 3 with semi-direct product Lie group structure, where $\mathbb{S}^{3}$ S 3 is the set of unit quaternions. Velocities and angular velocities with respect to the body-fixed frame are given as the velocity vector of the configuration. We introduce internal constraints, where the rigid cross sections have to remain perpendicular to the center line to reduce the full Cosserat beam model to a Kirchhoff beam model. We derive the equations of motion by Hamilton’s principle with an augmented Lagrangian. In order to fully discretize the beam model in space and time, we only consider piecewise interpolated configurations in the variational principle. This leads, after approximating the action integral with second order, to the discrete equations of motion. Here, it is notable that we allow the Lagrange multipliers to be discontinuous in time in order to respect the derivatives of the constraint equations, also known as hidden constraints. In the last part, we will test our numerical scheme on two benchmark problems that show that there is no shear locking observable in the discretized beam model and that the errors are observed to decrease with second order with the spatial step size and the time step size.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2284
Author(s):  
Endre Kovács ◽  
Ádám Nagy ◽  
Mahmoud Saleh

This paper introduces a set of new fully explicit numerical algorithms to solve the spatially discretized heat or diffusion equation. After discretizing the space and the time variables according to conventional finite difference methods, these new methods do not approximate the time derivatives by finite differences, but use a combined two-stage constant-neighbour approximation to decouple the ordinary differential equations and solve them analytically. In the final expression for the new values of the variable, the time step size appears not in polynomial or rational, but in exponential form with negative coefficients, which can guarantee stability. The two-stage scheme contains a free parameter p and we analytically prove that the convergence is second order in the time step size for all values of p and the algorithm is unconditionally stable if p is at least 0.5, not only for the linear heat equation, but for the nonlinear Fisher’s equation as well. We compare the performance of the new methods with analytical and numerical solutions. The results suggest that the new algorithms can be significantly faster than the widely used explicit or implicit methods, particularly in the case of extremely large stiff systems.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Philku Lee ◽  
George V. Popescu ◽  
Seongjai Kim

After a theory of morphogenesis in chemical cells was introduced in the 1950s, much attention had been devoted to the numerical solution of reaction-diffusion (RD) partial differential equations (PDEs). The Crank–Nicolson (CN) method has been a common second-order time-stepping procedure. However, the CN method may introduce spurious oscillations for nonsmooth data unless the time step size is sufficiently small. This article studies a nonoscillatory second-order time-stepping procedure for RD equations, called a variable-θmethod, as a perturbation of the CN method. In each time level, the new method detects points of potential oscillations to implicitly resolve the solution there. The proposed time-stepping procedure is nonoscillatory and of a second-order temporal accuracy. Various examples are given to show effectiveness of the method. The article also performs a sensitivity analysis for the numerical solution of biological pattern forming models to conclude that the numerical solution is much more sensitive to the spatial mesh resolution than the temporal one. As the spatial resolution becomes higher for an improved accuracy, the CN method may produce spurious oscillations, while the proposed method results in stable solutions.


2017 ◽  
Vol 21 (5) ◽  
pp. 1408-1428 ◽  
Author(s):  
Xiaoling Liu ◽  
Chuanju Xu

AbstractThis paper is concerned with numerical methods for the Navier-Stokes-Nernst-Planck-Poisson equation system. The main goal is to construct and analyze some stable time stepping schemes for the time discretization and use a spectral method for the spatial discretization. The main contribution of the paper includes: 1) an useful stability inequality for the weak solution is derived; 2) a first order time stepping scheme is constructed, and the non-negativity of the concentration components of the discrete solution is proved. This is an important property since the exact solution shares the same property. Moreover, the stability of the scheme is established, together with a stability condition on the time step size; 3) a modified first order scheme is proposed in order to decouple the calculation of the velocity and pressure in the fluid field. This new scheme equally preserves the non-negativity of the discrete concentration solution, and is stable under a similar stability condition; 4) a stabilization technique is introduced to make the above mentioned schemes stable without restriction condition on the time step size; 5) finally we construct a second order finite difference scheme in time and spectral discretization in space. The numerical tests carried out in the paper show that all the proposed schemes possess some desirable properties, such as conditionally/unconditionally stability, first/second order convergence, non-negativity of the discrete concentrations, and so on.


Author(s):  
Sethuramalingam Subbarayalu ◽  
Lonny L. Thompson

hp-Adaptive time-discontinuous Galerkin methods are developed for second-order hyperbolic systems. Explicit a priori error estimates in terms of time-step size, approximation order, and solution regularity are derived. Knowledge of these a priori convergence rates in combination with a posteriori error estimates computed from the jump in time-discontinuous solutions are used to automatically select time-step size h and approximation order p to achieve a specified error tolerance with a minimal number of total degrees-of-freedom. We show that the temporal jump error is a good indicator of the local error, and the summation of jump error for the total interval is good indicator for the global and accumulation errors. In addition, the accumulation error at the end of a time-step can be estimated well by the summation of the local jump error at the beginning of a time-step provided the approximation order is greater or equal to the solution regularity. Superconvergence of the end points of a time-step for high-order polynomials are also demonstrated.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
S. S. Ravindran

Micropolar fluid model consists of Navier-Stokes equations and microrotational velocity equations describing the dynamics of flows in which microstructure of fluid is important. In this paper, we propose and analyze a decoupled time-stepping algorithm for the evolutionary micropolar flow. The proposed method requires solving only one uncoupled Navier-Stokes and one microrotation subphysics problem per time step. We derive optimal order error estimates in suitable norms without assuming any stability condition or time step size restriction.


Author(s):  
Ethan Corle ◽  
Matthew Floros ◽  
Sven Schmitz

The methods of using the viscous vortex particle method, dynamic inflow, and uniform inflow to conduct whirl-flutter stability analysis are evaluated on a four-bladed, soft-inplane tiltrotor model using the Rotorcraft Comprehensive Analysis System. For the first time, coupled transient simulations between comprehensive analysis and a vortex particle method inflow model are used to predict whirl-flutter stability. Resolution studies are performed for both spatial and temporal resolution in the transient solution. Stability in transient analysis is noted to be influenced by both. As the particle resolution is refined, a reduction in simulation time-step size must also be performed. An azimuthal time step size of 0.3 deg is used to consider a range of particle resolutions to understand the influence on whirl-flutter stability predictions. Comparisons are made between uniform inflow, dynamic inflow, and the vortex particle method with respect to prediction capabilities when compared to wing beam-bending frequency and damping experimental data. Challenges in assessing the most accurate inflow model are noted due to uncertainty in experimental data; however, a consistent trend of increasing damping with additional levels of fidelity in the inflow model is observed. Excellent correlation is observed between the dynamic inflow predictions and the vortex particle method predictions in which the wing is not part of the inflow model, indicating that the dynamic inflow model is adequate for capturing damping due to the induced velocity on the rotor disk. Additional damping is noted in the full vortex particle method model, with the wing included, which is attributed to either an interactional aerodynamic effect between the rotor and the wing or a more accurate representation of the unsteady loading on the wing due to induced velocities.


Sign in / Sign up

Export Citation Format

Share Document