Laser Micro-Machining Using Near-Field Nano-Optics

Author(s):  
Haseung Chung ◽  
Katsuo Kurabayashi ◽  
Suman Das

Solid immersion lenses (SIL) facilitate high numerical aperture (NA) and consequent sub-wavelength diffraction limited focusing in near-field optics based systems. Such systems are in commercial and research use for various applications including near-field scanning optical microscopy, ultra-high density magneto-optic data storage and near-field nanolithography. Here, we present a novel nanomanufacturing method using SIL-based near-field optics for laser-induced sub-micron patterning on silicon wafers. The near-field effect of SILs was investigated by using hemispherical BK7 lenses (n=1.5196, NA=0.9237) to superfocus an incident Q-switched, 532nm Nd:YAG laser beam transmitted through a focusing objective. This optical arrangement achieved a laser-processed feature resolution near the diffraction limit in air. Results of experiments that were conducted at various processing conditions to investigate the effects of varying incident laser power (with average pulse power less than 1W), pulse repetition rate, pulse width, number of pulses and size of SIL on processed feature size and resolution are presented.

1995 ◽  
Vol 3 (8) ◽  
pp. 3-4
Author(s):  
Sheldon Schultz

In the past few years the field of near-field scanning optical microscopy (NSOM) has developed rapidly with applications spanning all the physical sciences. A key goal of this form of microscopy is to obtain resolution at levels well beyond those possible with the usual far-field optics. In contrast to far-field optics, which is bounded by the well known limits imposed by diffraction, near-field optics has no “in principle” fundamental lower limit in lateral size, at least down to atomic dimensions, although in practice, signal-to-noise considerations may restrict the application of NSOM to a few nanometers.


1999 ◽  
Vol 588 ◽  
Author(s):  
Charles Paulson ◽  
Brian Hawkins ◽  
Jingxi Sun ◽  
Arthur B. Ellis ◽  
Leon Mccaughan ◽  
...  

AbstractA novel Near-field Scanning Optical Microscopy (NSOM) technique is used to obtain simultaneous topology, photoluminescence and photoreflectance (PR) spectra. PR spectra from GaAs surfaces were obtained and the local electric fields were calculated. Sub-wavelength resolution is expected for this technique and achieved for PL and topology measurements. Photovoltages, resulting from the high intensity of light at the NSOM tip, can limit the spatial resolution of the electric field determination.


Author(s):  
J. Kerimo ◽  
D. A. Vanden Bout ◽  
D. A. Higgins ◽  
P.F. Barbara

Conjugated polymers such as poly(p-pyridyl vinylene)(PPyV) have interesting photoluminescence and electroluminescence properties. These polymers have a high quantum yield of luminescence and are of great practical importance as light-emitting diodes or organic semiconductors. We have performed studies on thin films(about 50nm) of these polymers using the high spatial optical resolution of NSOM.The luminescent polymer film was excited with 488nm light and the fluorescence was collected with a high numerical aperture microscope objective. Topography and NSOM fluorescence images were collected simultaneously and used for studying the morphology and optical properties of the film. An example of topography and fluorescence NSOM images of the film is shown in Fig. 1a. The films are very flat (2nm rms variations in topography) and have very few features. The NSOM fluorescence image shows great film inhomogeneity with bright features varying in size from 80-250nm observed throughout (Fig. 1b). These features do not correlate with the topography, indicating they may be located in the bulk of the polymer or are simply not resolvable in the topography image.


1993 ◽  
Vol 1 (8) ◽  
pp. 2-3 ◽  
Author(s):  
Jean-Paul Revel

As the year ends there is a bumper crop of announcements of advances that I find absolutely amazing. First of course is the continued clever use of light as a veritable tool in manipulating everything from atoms (entrapping them in “atomic molasses”) to having tugs of war with biological motors (using “light tweezers”). But these developments will be for discussion another time. What I want to talk about in this installment are advances in Near Field Scanning Optical Microscopy (NSOM), which has now been used by Chichester and Betzig to visualize single molecules.In classical (far field) optics, resolution is limited by diffraction to about 1/2 the wavelength of the radiation used for imaging. Near field optics overcome this limitation by use of scanning techniques similar to those employed in Scanning Tunneling or Scanning Force Microscopy.


2000 ◽  
Vol 138 ◽  
pp. 173-174 ◽  
Author(s):  
Hiroaki Nakamura ◽  
Keiji Sawada ◽  
Hirotomo Kambe ◽  
Toshiharu Saiki ◽  
Tetsuya Sato

Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


1995 ◽  
Vol 67 (17) ◽  
pp. 2483-2485 ◽  
Author(s):  
C. L. Jahncke ◽  
M. A. Paesler ◽  
H. D. Hallen

Sign in / Sign up

Export Citation Format

Share Document