Rupture Process During Drop Coalescence

2005 ◽  
Author(s):  
H. Aryafar ◽  
H. P. Kavehpour

During the coalescence of a drop with a planar interface, a hole is generated in a microscopic film that separates the drop from the interface. An experimental study has been performed to investigate the time dependent behavior of the radius of the hole generated during coalescence. The study consisted of placing drops of various sizes and physical properties on a planar interface. The coalescence process was recorded from underneath the interface with the aid of a high speed digital camera and a prism. The experiment captured two separate processes, film rupture and the closing of the hole. During the film rupture, the hole radius demonstrated a power law time dependence. Dimensional analysis showed the percentage of time the hole used to reach its maximum radius was approximately constant for all drops. Moreover, all dimensionless drop rupture radii and times fit onto a single master curve and were independent of their physical properties during the opening. However during the closing of the hole, the dimensionless time and radii did not fit a master curve analogous to the hole rupture. The closing of the hole is an entirely different event from the opening and is governed by different parameters.

1975 ◽  
Vol 48 (1) ◽  
pp. 69-78 ◽  
Author(s):  
N. Nakajima ◽  
E. A. Collins

Abstract Dynamic mechanical measurements, stress—strain measurements, and steady-shear measurements made over a range of temperatures and frequencies or deformation rates are used to characterize the viscoelastic properties of raw elastomers. The measurements involve both small and large deformations. It is shown that the results on either butadiene—acrylonitrile (NBR) or butadiene—styrene (SBR) can be reduced to a single master curve. The instruments and ranges covered included Instron stress—strain (0.2–20 in./min; 25–75°C), Instron capillary (100−104sec −1; 100°C), Rheovibron (110 Hz; 23–156°C), Rheometrics (4×10−2−2.6×102 sec−1; 100°C), MTS high speed tester (267-26 700%/sec; 25–97°C), steady-state Mooney (0.05–20 rpm; 25–150°C) and transient Mooney (0.05 rpm; 25–150°C).


Alloy Digest ◽  
1988 ◽  
Vol 37 (3) ◽  

Abstract UNS NO. C36000 is a leaded brass suitable for high-speed screw-machine work. It has many uses such as hardware, gears and pinions. Its trade names include free-turning brass, free-cutting yellow brass and high-leaded brass. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-536. Producer or source: Brass mills.


Alloy Digest ◽  
1982 ◽  
Vol 31 (11) ◽  

Abstract ANACONDA Alloy 360 is a leaded brass and is the alloy most often used for high-speed machining operations; it fills most of the needs for such purposes. Alloy 360 is the standard free-cutting brass and its machinability has become the standard by which all other copper-base alloys are rated. It has medium strength and ductility. Alloy 360 is used for hardware such as gears and pinions where excellent machinability is of prime importance and for all types of automatic high-speed screw-machine products. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-447. Producer or source: Anaconda American Brass Company.


Alloy Digest ◽  
1986 ◽  
Vol 35 (11) ◽  

Abstract ENPLATE NI-423 is a nickel-phosphorus alloy deposited by chemical reduction without electric current. It is deposited by a stable, relatively high-speed functional electroless nickel process that produces a low-stress coating with good ductility and excellent resistance to corrosion. Its many uses include equipment for chemicals and food, aerospace components, molds and electronic devices. This datasheet provides information on composition, physical properties, and hardness. It also includes information on corrosion and wear resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: Ni-343. Producer or source: Enthone Inc..


Alloy Digest ◽  
1963 ◽  
Vol 12 (1) ◽  

Abstract ALX is a composition of nonferrous materials with a cobalt base containing chromium, tungsten and carbon. This alloy is commonly supplied in the cast-to-shape form, having an as-cast hardness of Rockwell C60-62 and requiring no further heat treatment. ALX is also supplied as cast tool bit material and is useful where conventional high-speed steels or carbides do not function effectively. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, forming, heat treating, and machining. Filing Code: Co-35. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1967 ◽  
Vol 16 (4) ◽  

Abstract Mustang-LC is a tungsten-molybdenum high-speed steel specially developed for hot work applications requiring long die life. It is recommended for hot forming and swaging dies, hot extrusion dies, hot punches, etc. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-192. Producer or source: Jessop Steel Company.


Alloy Digest ◽  
1989 ◽  
Vol 38 (1) ◽  

Abstract UNS T12001 is a general-purpose, tungsten, high-speed steel containing nominally 18% tungsten, 4% chromium and 1% vanadium. It is suitable for practically all high-speed applications. This steel has been the standard of the industry for many years because of its cutting ability, ease of heat treatment and minimum tendency to decarburize. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-495. Producer or source: Tool steel mills.


Alloy Digest ◽  
1988 ◽  
Vol 37 (5) ◽  

Abstract UNS No. T11310 is the high vanadium type of molybdenum high-speed steel. It is a deep-hardening steel and offers high cutting ability and excellent finishing properties. It is a general-purpose steel for cutting tools and is used in such applications as taps, lathe tools and reamers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on heat treating and machining. Filing Code: TS-490. Producer or source: Tool steel mills.


Alloy Digest ◽  
2002 ◽  
Vol 51 (5) ◽  

Abstract NIROSTA 4305 is an austenitic alloy with a high sulfur content. The alloy is typically used for machined parts. As with other austenitic steels, it is necessary to machine with good-quality high-speed steel or tungsten carbide tools. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-854. Producer or source: ThyssenKrupp Nirosta GmbH.


Sign in / Sign up

Export Citation Format

Share Document